Eigenvalue problems with indefinite weight
Andrzej Szulkin; Michel Willem
Studia Mathematica (1999)
- Volume: 135, Issue: 2, page 191-201
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topSzulkin, Andrzej, and Willem, Michel. "Eigenvalue problems with indefinite weight." Studia Mathematica 135.2 (1999): 191-201. <http://eudml.org/doc/216650>.
@article{Szulkin1999,
abstract = {We consider the linear eigenvalue problem -Δu = λV(x)u, $u ∈ D^\{1,2\}_0(Ω)$, and its nonlinear generalization $-Δ_\{p\}u = λV(x)|u|^\{p-2\}u$, $u ∈ D^\{1,p\}_0(Ω)$. The set Ω need not be bounded, in particular, $Ω = ℝ^N$ is admitted. The weight function V may change sign and may have singular points. We show that there exists a sequence of eigenvalues $λ_n → ∞$.},
author = {Szulkin, Andrzej, Willem, Michel},
journal = {Studia Mathematica},
keywords = {eigenvalue problem; Laplacian; p-Laplacian; indefinite weight; -Laplacian},
language = {eng},
number = {2},
pages = {191-201},
title = {Eigenvalue problems with indefinite weight},
url = {http://eudml.org/doc/216650},
volume = {135},
year = {1999},
}
TY - JOUR
AU - Szulkin, Andrzej
AU - Willem, Michel
TI - Eigenvalue problems with indefinite weight
JO - Studia Mathematica
PY - 1999
VL - 135
IS - 2
SP - 191
EP - 201
AB - We consider the linear eigenvalue problem -Δu = λV(x)u, $u ∈ D^{1,2}_0(Ω)$, and its nonlinear generalization $-Δ_{p}u = λV(x)|u|^{p-2}u$, $u ∈ D^{1,p}_0(Ω)$. The set Ω need not be bounded, in particular, $Ω = ℝ^N$ is admitted. The weight function V may change sign and may have singular points. We show that there exists a sequence of eigenvalues $λ_n → ∞$.
LA - eng
KW - eigenvalue problem; Laplacian; p-Laplacian; indefinite weight; -Laplacian
UR - http://eudml.org/doc/216650
ER -
References
top- [1] W. Allegretto, Principal eigenvalues for indefinite-weight elliptic problems in , Proc. Amer. Math. Soc. 116 (1992), 701-706. Zbl0764.35031
- [2] W. Allegretto and Y. X. Huang, Eigenvalues of the indefinite-weight p-Laplacian in weighted spaces, Funkc. Ekvac. 38 (1995), 233-242. Zbl0922.35114
- [3] K. J. Brown, C. Cosner and J. Fleckinger, Principal eigenvalues for problems with indefinite weight function on , Proc. Amer. Math. Soc. 109 (1990), 147-155. Zbl0726.35089
- [4] K. J. Brown and A. Tertikas, The existence of principal eigenvalues for problems with indefinite weight function on , Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 561-569. Zbl0804.35095
- [5] J.-N. Corvellec, M. Degiovanni and M. Marzocchi, Deformation properties for continuous functionals and critical point theory, Topol. Methods Nonlinear Anal. 1 (1993), 151-171. Zbl0789.58021
- [6] P. Drábek and Y. X. Huang, Bifurcation problems for the p-Laplacian in , Trans. Amer. Math. Soc. 349 (1997), 171-188. Zbl0868.35010
- [7] P. Drábek, Z. Moudan and A. Touzani, Nonlinear homogeneous eigenvalue problem in : nonstandard variational approach, Comm. Math. Univ. Carolin. 38 (1997), 421-431. Zbl0940.35150
- [8] J. Fleckinger, R. F. Manásevich, N. M. Stavrakakis and F. de Thélin, Principal eigenvalues for some quasilinear elliptic equations on , Adv. Differential Equations 2 (1997), 981-1003. Zbl1023.35505
- [9] J. P. Garcia Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations 144 (1998), 441-476.
- [10] Y. X. Huang, Eigenvalues of the p-Laplacian in with indefinite weight, Comm. Math. Univ. Carolin. 36 (1995), 519-527. Zbl0839.35097
- [11] D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math. 121 (1985), 463-494. Zbl0593.35119
- [12] E. H. Lieb and M. Loss, Analysis, Amer. Math. Soc., Providence, R.I., 1997.
- [13] V. G. Maz'ja, Sobolev Spaces, Springer, Berlin, 1985.
- [14] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math. 65, Amer. Math. Soc., Providence, R.I., 1986.
- [15] G. Rozenblum and M. Solomyak, On principal eigenvalues for indefinite problems in Euclidean space, Math. Nachr. 192 (1998), 205-223. Zbl0908.35085
- [16] M. Struwe, Variational Methods, Springer, Berlin, 1990.
- [17] A. Szulkin, Ljusternik-Schnirelmann theory on -manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 119-139. Zbl0661.58009
- [18] A. Tertikas, Critical phenomena in linear elliptic problems, J. Funct. Anal. 154 (1998), 42-66. Zbl0920.35044
- [19] M. Willem, Analyse Harmonique Réelle, Hermann, Paris, 1995.
- [20] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.