Some remarks on groups in which elements with the same p -power commute

Patrizia Longobardi; Mercede Maj

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1999)

  • Volume: 10, Issue: 1, page 11-15
  • ISSN: 1120-6330

Abstract

top
In this paper we characterize certain classes of groups G in which, from x p = y p ( x , y G , p a fixed prime), it follows that x y = y x . Our results extend results previously obtained by other authors, in the finite case.

How to cite

top

Longobardi, Patrizia, and Maj, Mercede. "Some remarks on groups in which elements with the same \( p \)-power commute." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 10.1 (1999): 11-15. <http://eudml.org/doc/252337>.

@article{Longobardi1999,
abstract = {In this paper we characterize certain classes of groups \( G \) in which, from \( x^\{p\} = y^\{p\} \) (\( x, y \in G \), \( p \) a fixed prime), it follows that \( xy = yx \). Our results extend results previously obtained by other authors, in the finite case.},
author = {Longobardi, Patrizia, Maj, Mercede},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {p-powers; p-elements; Locally nilpotent groups; -powers; -elements; locally nilpotent groups; regular -groups; hypercentral groups; central series; normal subgroups; finitely generated subgroups},
language = {eng},
month = {3},
number = {1},
pages = {11-15},
publisher = {Accademia Nazionale dei Lincei},
title = {Some remarks on groups in which elements with the same \( p \)-power commute},
url = {http://eudml.org/doc/252337},
volume = {10},
year = {1999},
}

TY - JOUR
AU - Longobardi, Patrizia
AU - Maj, Mercede
TI - Some remarks on groups in which elements with the same \( p \)-power commute
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1999/3//
PB - Accademia Nazionale dei Lincei
VL - 10
IS - 1
SP - 11
EP - 15
AB - In this paper we characterize certain classes of groups \( G \) in which, from \( x^{p} = y^{p} \) (\( x, y \in G \), \( p \) a fixed prime), it follows that \( xy = yx \). Our results extend results previously obtained by other authors, in the finite case.
LA - eng
KW - p-powers; p-elements; Locally nilpotent groups; -powers; -elements; locally nilpotent groups; regular -groups; hypercentral groups; central series; normal subgroups; finitely generated subgroups
UR - http://eudml.org/doc/252337
ER -

References

top
  1. Bianchi, M. - Gillio Berta Mauri, A. - Verardi, L., Groups in which elements with the same p -power commute. Le Matematiche, Supplemento vol. LI, 1996, 53-62. Zbl0902.20008MR1485697
  2. Blackburn, N., Generalizations of certain elementary theorems on p -groups. Proc. London Math. Soc., 11, 1961, 1-22. Zbl0102.01903MR122876
  3. Brailovsky, L. - Freiman, G. A., On two-element subsets in groups. Ann. of the New York Academy of Sciences, 373, 1981, 183-190. Zbl0579.20017MR719039
  4. Brailovsky, L. - Herzog, M., Counting squares of two-subsets in finite groups. Ars Combinatoria, to appear. Zbl0861.20024MR1386941
  5. Bubboloni, D. - Corsi, G., Finite p -groups in which every element of order p is central. To appear. 
  6. Huppert, B., Endliche Gruppen I. Springer-Verlag, Berlin1967. Zbl0412.20002MR224703
  7. Laffey, T. J., A lemma on finite p -groups and some consequences. Proc. Camb. Phil. Soc., 75, 1974, 133-137. Zbl0277.20022MR332961
  8. Laffey, T. J., Centralizers of Elementary Abelian Subgroups in Finite p -groups. J. Algebra, 51, 1978, 88-96. Zbl0374.20024MR472997
  9. Mingyao Xu, , The power structure of finite p -groups. Bull. Austral. Math. Soc., 36, 1987, 1-10. Zbl0607.20010MR897416DOI10.1017/S0004972700026241
  10. Ol'shanskii, A. Yu., Geometry of Defining Relations in Groups. Nauka, Moscow1989 (English translation: Kluwer Academic Publisher, Dordrecht1991). Zbl0732.20019MR1024791
  11. Robinson, D. J. S., Finiteness conditions and generalized soluble groups. Springer-Verlag, Berlin1972. Zbl0243.20033

NotesEmbed ?

top

You must be logged in to post comments.