Tangential Cauchy-Riemann equations on quadratic manifolds

Marco M. Peloso; Fulvio Ricci

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2002)

  • Volume: 13, Issue: 3-4, page 285-294
  • ISSN: 1120-6330

Abstract

top
We study the tangential Cauchy-Riemann equations ¯ b u = ω for 0 , q -forms on quadratic C R manifolds. We discuss solvability for data ω in the Schwartz class and describe the range of the tangential Cauchy-Riemann operator in terms of the signatures of the scalar components of the Levi form.

How to cite

top

Peloso, Marco M., and Ricci, Fulvio. "Tangential Cauchy-Riemann equations on quadratic manifolds." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 13.3-4 (2002): 285-294. <http://eudml.org/doc/252369>.

@article{Peloso2002,
abstract = {We study the tangential Cauchy-Riemann equations $\bar\{\partial\}_\{b\} u = \omega$ for $(0,q)$-forms on quadratic $CR$ manifolds. We discuss solvability for data $\omega$ in the Schwartz class and describe the range of the tangential Cauchy-Riemann operator in terms of the signatures of the scalar components of the Levi form.},
author = {Peloso, Marco M., Ricci, Fulvio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Tangential Cauchy-Riemann complex; Kohn Laplacian; CR manifolds; Global solvability; Hypoellipticity; tangential Cauchy-Riemann complex; global solvability; hypoellipticity},
language = {eng},
month = {12},
number = {3-4},
pages = {285-294},
publisher = {Accademia Nazionale dei Lincei},
title = {Tangential Cauchy-Riemann equations on quadratic manifolds},
url = {http://eudml.org/doc/252369},
volume = {13},
year = {2002},
}

TY - JOUR
AU - Peloso, Marco M.
AU - Ricci, Fulvio
TI - Tangential Cauchy-Riemann equations on quadratic manifolds
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2002/12//
PB - Accademia Nazionale dei Lincei
VL - 13
IS - 3-4
SP - 285
EP - 294
AB - We study the tangential Cauchy-Riemann equations $\bar{\partial}_{b} u = \omega$ for $(0,q)$-forms on quadratic $CR$ manifolds. We discuss solvability for data $\omega$ in the Schwartz class and describe the range of the tangential Cauchy-Riemann operator in terms of the signatures of the scalar components of the Levi form.
LA - eng
KW - Tangential Cauchy-Riemann complex; Kohn Laplacian; CR manifolds; Global solvability; Hypoellipticity; tangential Cauchy-Riemann complex; global solvability; hypoellipticity
UR - http://eudml.org/doc/252369
ER -

References

top
  1. Airapetyan, R.A. - Khenkin, G.M., Integral represantation of differential forms on Cauchy-Riemann manifolds and the theory of C R -functions. Russian Math. Surveys, 39:3, 1984, 41-118. Zbl0589.32035MR747791
  2. Boggess, A., C R Manifolds and the Tangential Cauchy-Riemann Complex. CRC Press, Boca Raton1991. Zbl0760.32001MR1211412
  3. Chen, S. - Shaw, M., Partial Differential Equations in Several Complex Variables. International Press, Providence2001. Zbl0963.32001
  4. Folland, G.B. - Kohn, J.J., The Neumann problem for the Cauchy-Riemann complex. Annals of Math. Studies, 57, Princeton U. Press, Princeton1972. Zbl0247.35093MR461588
  5. Folland, G.B. - Stein, E.M., Estimates for the ¯ b complex and analysis on the Heisenberg group. Comm. Pure Appl. Math., 27, 1974, 429-522. Zbl0293.35012MR367477
  6. Lewy, H., An example of a smooth differential operator without solution. Ann. Math., 66, 1957, 155-158. Zbl0078.08104MR88629
  7. Peloso, M.M. - Ricci, F., Analysis of the Kohn Laplacian on quadratic C R manifolds. Preprint 2001. Zbl1043.32021MR2003351DOI10.1016/S0022-1236(03)00176-9
  8. Rossi, H. - Vergne, M., Group representation on Hilbert spaces defined in terms of ¯ b -cohomology on the Silov boundary of a Siegel domain. Pac. J. Math., 6, 1976, 193-207. Zbl0354.22018MR422517
  9. Andreotti, A. - Fredricks, G. - Nacinovich, M., On the absence of Poincaré lemma in tangential Chauchy-Riemann complexes. Ann. Scuola Norm. Sup. Pisa, 8, 1981, 365-404. Zbl0482.35061MR634855
  10. Kohn, J.J., Boundary of complex manifolds. Proc. Conf. on Complex Manifolds (Minneapolis, 1964). Springer-Verlag, New York1965, 81-94. Zbl0166.36003MR175149
  11. Treves, F., A remark on the Poincaré lemma in analytic complexes with nondegenerate Levi form. Comm. PDE, 7, 1982, 1467-1482. Zbl0535.32005MR679951DOI10.1080/03605308208820259

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.