On groups with many nearly maximal subgroups
Silvana Franciosi; Francesco de Giovanni
- Volume: 9, Issue: 1, page 19-23
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topFranciosi, Silvana, and de Giovanni, Francesco. "On groups with many nearly maximal subgroups." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 9.1 (1998): 19-23. <http://eudml.org/doc/252371>.
@article{Franciosi1998,
abstract = {A subgroup \( M \) of a group \( G \) is nearly maximal if the index \( |G : M | \) is infinite but every subgroup of \( G \) properly containing \( M \) has finite index, and the group \( G \) is called nearly \( IM \) if all its subgroups of infinite index are intersections of nearly maximal subgroups. It is proved that an infinite (generalized) soluble group is nearly \( IM \) if and only if it is either cyclic or dihedral.},
author = {Franciosi, Silvana, de Giovanni, Francesco},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Nearly maximal subgroup; Nearly IM-group; Soluble group; nearly maximal subgroups; subgroups of infinite index; subgroups of finite index; intersections of maximal subgroups; nearly IM-groups},
language = {eng},
month = {3},
number = {1},
pages = {19-23},
publisher = {Accademia Nazionale dei Lincei},
title = {On groups with many nearly maximal subgroups},
url = {http://eudml.org/doc/252371},
volume = {9},
year = {1998},
}
TY - JOUR
AU - Franciosi, Silvana
AU - de Giovanni, Francesco
TI - On groups with many nearly maximal subgroups
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1998/3//
PB - Accademia Nazionale dei Lincei
VL - 9
IS - 1
SP - 19
EP - 23
AB - A subgroup \( M \) of a group \( G \) is nearly maximal if the index \( |G : M | \) is infinite but every subgroup of \( G \) properly containing \( M \) has finite index, and the group \( G \) is called nearly \( IM \) if all its subgroups of infinite index are intersections of nearly maximal subgroups. It is proved that an infinite (generalized) soluble group is nearly \( IM \) if and only if it is either cyclic or dihedral.
LA - eng
KW - Nearly maximal subgroup; Nearly IM-group; Soluble group; nearly maximal subgroups; subgroups of infinite index; subgroups of finite index; intersections of maximal subgroups; nearly IM-groups
UR - http://eudml.org/doc/252371
ER -
References
top- Lennox, J. C. - Robinson, D. J. S., Nearly maximal subgroups of finitely generated soluble groups. Arch. Math. Basel, 38, 1982, 289-295. Zbl0485.20027MR658373DOI10.1007/BF01304790
- Menegazzo, F., Gruppi nei quali ogni sottogruppo è intersezione di sottogruppi massimali. Atti Acc. Lincei Rend. fis., s. 8, 48, 1970, 559-562. Zbl0216.08802MR297882
- Möhres, W., Torsionfreie Gruppen, deren Untergruppen alle subnormal sind. Math. Ann., 284, 1989, 245-249. Zbl0648.20039MR1000109DOI10.1007/BF01442874
- Riles, J. B., The near Frattini subgroups of infinite groups. J. Algebra, 12, 1969, 155-171. Zbl0182.03702MR238962
- Robinson, D. J. S., Finiteness Conditions and Generalized Soluble Groups. Springer-Verlag, Berlin-New York1972. Zbl0243.20033
- Roseblade, J. E., Group rings of polycyclic groups. J. Pure Appl. Algebra, 3, 1973, 307-328. Zbl0285.20008MR332944
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.