Gradient flows with metric and differentiable structures, and applications to the Wasserstein space

Luigi Ambrosio; Nicola Gigli; Giuseppe Savaré

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2004)

  • Volume: 15, Issue: 3-4, page 327-343
  • ISSN: 1120-6330

Abstract

top
In this paper we summarize some of the main results of a forthcoming book on this topic, where we examine in detail the theory of curves of maximal slope in a general metric setting, following some ideas introduced in [11, 5], and study in detail the case of the Wasserstein space of probability measures. In the first part we derive new general conditions ensuring convergence of the implicit time discretization scheme to a curve of maximal slope, the uniqueness, and the error estimates. In the second part we study in detail the differentiable structure of the Wasserstein space, to which the metric theory applies, and use this structure to give also an equivalent concept of gradient flow. Our analysis includes measures in infinite-dimensional Hilbert spaces and it does not require any absolute continuity assumption on the measures involved.

How to cite

top

Ambrosio, Luigi, Gigli, Nicola, and Savaré, Giuseppe. "Gradient flows with metric and differentiable structures, and applications to the Wasserstein space." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 15.3-4 (2004): 327-343. <http://eudml.org/doc/252389>.

@article{Ambrosio2004,
abstract = {In this paper we summarize some of the main results of a forthcoming book on this topic, where we examine in detail the theory of curves of maximal slope in a general metric setting, following some ideas introduced in [11, 5], and study in detail the case of the Wasserstein space of probability measures. In the first part we derive new general conditions ensuring convergence of the implicit time discretization scheme to a curve of maximal slope, the uniqueness, and the error estimates. In the second part we study in detail the differentiable structure of the Wasserstein space, to which the metric theory applies, and use this structure to give also an equivalent concept of gradient flow. Our analysis includes measures in infinite-dimensional Hilbert spaces and it does not require any absolute continuity assumption on the measures involved.},
author = {Ambrosio, Luigi, Gigli, Nicola, Savaré, Giuseppe},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Gradient flows; Wasserstein metric; Optimal transport},
language = {eng},
month = {12},
number = {3-4},
pages = {327-343},
publisher = {Accademia Nazionale dei Lincei},
title = {Gradient flows with metric and differentiable structures, and applications to the Wasserstein space},
url = {http://eudml.org/doc/252389},
volume = {15},
year = {2004},
}

TY - JOUR
AU - Ambrosio, Luigi
AU - Gigli, Nicola
AU - Savaré, Giuseppe
TI - Gradient flows with metric and differentiable structures, and applications to the Wasserstein space
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2004/12//
PB - Accademia Nazionale dei Lincei
VL - 15
IS - 3-4
SP - 327
EP - 343
AB - In this paper we summarize some of the main results of a forthcoming book on this topic, where we examine in detail the theory of curves of maximal slope in a general metric setting, following some ideas introduced in [11, 5], and study in detail the case of the Wasserstein space of probability measures. In the first part we derive new general conditions ensuring convergence of the implicit time discretization scheme to a curve of maximal slope, the uniqueness, and the error estimates. In the second part we study in detail the differentiable structure of the Wasserstein space, to which the metric theory applies, and use this structure to give also an equivalent concept of gradient flow. Our analysis includes measures in infinite-dimensional Hilbert spaces and it does not require any absolute continuity assumption on the measures involved.
LA - eng
KW - Gradient flows; Wasserstein metric; Optimal transport
UR - http://eudml.org/doc/252389
ER -

References

top
  1. AGUEH, M., Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. Arch. Rat. Mech. Anal., to appear (2002). Zbl1103.35051MR2703679
  2. AMBROSIO, L., Minimizing movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., (5), 19, 1995, 191-246. Zbl0957.49029MR1387558
  3. AMBROSIO, L. - GIGLI, N. - SAVARÉ, G., Gradient flows in metric spaces and in the Wasserstein space of probability measures. Birkhäuser, 2004. Zbl1090.35002
  4. AMBROSIO, L. - TILLI, P., Selected topics on «analysis in metric spaces». Scuola Normale Superiore, Pisa2000. Zbl1084.28500MR2012736
  5. BAIOCCHI, C., Discretization of evolution variational inequalities. In: F. COLOMBINI - A. MARINO - L. MODICA - S. SPAGNOLO (eds.), Partial differential equations and the calculus of variations. Vol. I, Birkhäuser, Boston, MA, 1989, 59-92. Zbl0677.65068MR1034002
  6. BENAMOU, J.-D. - BRENIER, Y., A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math., 84, 2000, n. 3, 375-393. Zbl0968.76069MR1738163DOI10.1007/s002110050002
  7. BRÉZIS, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam, 1973, North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). MR 50 #1060 Zbl0252.47055MR348562
  8. CARLEN, E.A. - GANGBO, W., Constrained steepest descent in the 2 -Wasserstein metric. Ann. Math., 157, 2003, n. 3, 807-846. Zbl1038.49040MR1983782DOI10.4007/annals.2003.157.807
  9. CARRILLO, J.A. - MCCANN, R.J. - VILLANI, C., Contraction in the 2 -Wasserstein metric length space and thermalization of granular media. To appear. Zbl1082.76105
  10. DE GIORGI, E., New problems on minimizing movements. In: C. BAIOCCHI - J.-L. LIONS (eds.), Boundary Value Problems for PDE and Applications. Masson, Paris1993, 81-98. Zbl0851.35052MR1260440
  11. DE GIORGI, E. - MARINO, A. - TOSQUES, M., Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Acc. Lincei Rend. fis., s. 8, v. 68, 1980, 180-187. Zbl0465.47041MR636814
  12. FEYEL, D. - ÜSTÜNEL, A.S., Measure transport on Wiener space and the Girsanov theorem. C.R. Math. Acad. Sci. Paris, 334, 2002, n. 11, 1025-1028. Zbl1036.60004MR1913729DOI10.1016/S1631-073X(02)02326-9
  13. GANGBO, W. - MCCANN, R.J., The geometry of optimal transportation. Acta Math., 177, 1996, n. 2, 113-161. Zbl0887.49017MR1440931DOI10.1007/BF02392620
  14. HEINONEN, J. - KOSKELA, P., Quasiconformal maps in metric spaces with controlled geometry. Acta Math., 181, 1998, n. 1, 1-61. Zbl0915.30018MR1654771DOI10.1007/BF02392747
  15. JORDAN, R. - KINDERLEHRER, D. - OTTO, F., The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal., 29, 1998, n. 1, 1-17 (electronic). Zbl0915.35120MR1617171DOI10.1137/S0036141096303359
  16. JOST, J., Nonpositive curvature: geometric and analytic aspects. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel1997. Zbl0896.53002MR1451625DOI10.1007/978-3-0348-8918-6
  17. MARINO, A. - SACCON, C. - TOSQUES, M., Curves of maximal slope and parabolic variational inequalities on nonconvex constraints. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 16(4), 1989, n. 2, 281-330. Zbl0699.49015MR1041899
  18. MAYER, U.F., Gradient flows on nonpositively curved metric spaces and harmonic maps. Comm. Anal. Geom., 6, 1998, n. 2, 199-253. Zbl0914.58008MR1651416
  19. MCCANN, R.J., A convexity principle for interacting gases. Adv. Math., 128, 1997, n. 1, 153-179. Zbl0901.49012MR1451422DOI10.1006/aima.1997.1634
  20. NOCHETTO, R.H. - SAVARÉ, G. - VERDI, C., A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math., 53, 2000, n. 5, 525-589. MR 1 737 503 Zbl1021.65047MR1737503DOI10.1002/(SICI)1097-0312(200005)53:5<525::AID-CPA1>3.0.CO;2-M
  21. OTTO, F., The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations, 26, 2001, n. 1-2, 101-174. Zbl0984.35089MR1842429DOI10.1081/PDE-100002243
  22. VILLANI, C., Topics in optimal transportation. Graduate studies in mathematics, 58, AMS, Providence, RI, 2003. Zbl1106.90001MR1964483DOI10.1007/b12016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.