Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential

Luisa Moschini; Alberto Tesei

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2005)

  • Volume: 16, Issue: 3, page 171-180
  • ISSN: 1120-6330

Abstract

top
In this preliminary Note we outline some results of the forthcoming paper [11], concerning positive solutions of the equation t u = u + c x 2 u ( 0 < c < n - 2 2 4 ; n 3 ) . A parabolic Harnack inequality is proved, which in particular implies a sharp two-sided estimate for the associated heat kernel. Our approach relies on the unitary equivalence of the Schrödinger operator H u = - u - c x 2 u with the opposite of the weighted Laplacian λ v = 1 x λ div x λ v when λ = 2 - n + 2 c 0 - c .

How to cite

top

Moschini, Luisa, and Tesei, Alberto. "Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 16.3 (2005): 171-180. <http://eudml.org/doc/252396>.

@article{Moschini2005,
abstract = {In this preliminary Note we outline some results of the forthcoming paper [11], concerning positive solutions of the equation $\partial_\{t\} u = \triangle u + \frac\{c\}\{|x^\{2\}|\} u \big( 0 < c < \frac\{(n-2)^\{2\}\}\{4\}; \, n \ge 3 \big)$. A parabolic Harnack inequality is proved, which in particular implies a sharp two-sided estimate for the associated heat kernel. Our approach relies on the unitary equivalence of the Schrödinger operator $Hu = - \triangle u - \frac\{c\}\{|x|^\{2\}\} u$ with the opposite of the weighted Laplacian $\triangle_\{\lambda\} v = \frac\{1\}\{|x|^\{\lambda\}\} \text\{div\} (|x|^\{\lambda\} \nabla v)$ when $\lambda = 2 - n + 2 \sqrt\{c_\{0\} - c\}$.},
author = {Moschini, Luisa, Tesei, Alberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Harnack inequality; Moser iteration technique; Weighted Laplace-Beltrami operator; Sharp heat kernel estimate; Hardy potential; weighted Laplace-Beltrami operator; sharp heat kernel estimate},
language = {eng},
month = {9},
number = {3},
pages = {171-180},
publisher = {Accademia Nazionale dei Lincei},
title = {Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential},
url = {http://eudml.org/doc/252396},
volume = {16},
year = {2005},
}

TY - JOUR
AU - Moschini, Luisa
AU - Tesei, Alberto
TI - Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2005/9//
PB - Accademia Nazionale dei Lincei
VL - 16
IS - 3
SP - 171
EP - 180
AB - In this preliminary Note we outline some results of the forthcoming paper [11], concerning positive solutions of the equation $\partial_{t} u = \triangle u + \frac{c}{|x^{2}|} u \big( 0 < c < \frac{(n-2)^{2}}{4}; \, n \ge 3 \big)$. A parabolic Harnack inequality is proved, which in particular implies a sharp two-sided estimate for the associated heat kernel. Our approach relies on the unitary equivalence of the Schrödinger operator $Hu = - \triangle u - \frac{c}{|x|^{2}} u$ with the opposite of the weighted Laplacian $\triangle_{\lambda} v = \frac{1}{|x|^{\lambda}} \text{div} (|x|^{\lambda} \nabla v)$ when $\lambda = 2 - n + 2 \sqrt{c_{0} - c}$.
LA - eng
KW - Harnack inequality; Moser iteration technique; Weighted Laplace-Beltrami operator; Sharp heat kernel estimate; Hardy potential; weighted Laplace-Beltrami operator; sharp heat kernel estimate
UR - http://eudml.org/doc/252396
ER -

References

top
  1. BARBATIS, G. - FILIPPAS, S. - TERTIKAS, A., Critical heat kernel estimates for Schrödinger operators via Hardy-Sobolev inequalities. J. Funct. Anal., 208, 2004, 1-30. Zbl1058.35049MR2034290DOI10.1016/j.jfa.2003.10.002
  2. BREZIS, H. - DUPAIGNE, L. - TESEI, A., On a semilinear elliptic equation with inverse-square potential. Selecta Math., 11, 2005, 1-7. Zbl1161.35383MR2179651DOI10.1007/s00029-005-0003-z
  3. CHIARENZA, F.M. - SERAPIONI, R.P., A remark on a Harnack inequality for degenerate parabolic equations. Rend. Sem. Mat. Univ. Padova, 73, 1985, 179-190. Zbl0588.35013MR799906
  4. DAVIES, E.B., Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, 92, Cambridge University Press, 1989. Zbl0699.35006MR990239DOI10.1017/CBO9780511566158
  5. FABES, E.D. - STROOCK, D.W., A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash. Arch. Rat. Mech. Anal., 96, 1986, 327-338. Zbl0652.35052MR855753DOI10.1007/BF00251802
  6. GRIGORYAN, A., The heat equation on non-compact Riemannian manifolds. Mat. Sb., 182, 1991, 55-87 (in Russian); Engl. transl.: Math. USSR Sb., 72, 1992, 47-77. MR1098839
  7. GRIGORYAN, A., Heat kernels on weighted manifolds and applications. Cont. Math., to appear; http:// www.ma.ic.ac.uk/~grigor/wma.pdf Zbl1106.58016MR2218016DOI10.1090/conm/398/07486
  8. GRIGORYAN, A. - SALOFF-COSTE, L., Stability results for Harnack inequalities. Ann. Inst. Fourier (Grenoble), 55, 2005, to appear; http://www.ma.ic.ac.uk/~grigor/vc1eps.pdf Zbl1115.58024MR2149405
  9. MILMAN, P.D. - SEMENOV, Y.A., Heat kernel bounds and desingularizing weights. J. Funct. Anal., 202, 2003, 1-24. Zbl1036.35044MR1994762DOI10.1016/S0022-1236(03)00018-1
  10. MILMAN, P.D. - SEMENOV, Y.A., Global heat kernel bounds via desingularizing weights. J. Funct. Anal., 212, 2004, 373-398. Zbl1057.47043MR2064932DOI10.1016/j.jfa.2003.12.008
  11. MOSCHINI, L. - TESEI, A., Parabolic Harnack Inequality for the Heat Equation with Inverse-Square Potential. Forum Math., to appear. Zbl1145.35051MR2328115DOI10.1515/FORUM.2007.017
  12. SALOFF-COSTE, L., A note on Poincaré, Sobolev and Harnack inequalities. Int. Math. Res. Notes, 2, 1992, 27-38. Zbl0769.58054MR1150597DOI10.1155/S1073792892000047
  13. SALOFF-COSTE, L., Parabolic Harnack inequality for divergence form second order differential operators. Potential Anal., 4, 1995, 429-467. Zbl0840.31006MR1354894DOI10.1007/BF01053457
  14. SALOFF-COSTE, L., Aspects of Sobolev-Type Inequalities. London Math. Soc. Lecture Notes, 289, Cambridge University Press, 2002. Zbl0991.35002MR1872526

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.