The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential”

Large time behaviour of heat kernels on non-compact manifolds: fast and slow decays

Thierry Coulhon (1998)

Journées équations aux dérivées partielles

Similarity:

In this talk we shall present some joint work with A. Grigory’an. Upper and lower estimates on the rate of decay of the heat kernel on a complete non-compact riemannian manifold have recently been obtained in terms of the geometry at infinity of the manifold, more precisely in terms of a kind of L 2 isoperimetric profile. The main point is to connect the decay of the L 1 - L norm of the heat semigroup with some adapted Nash or Faber-Krahn inequalities, which is done by functional analytic methods....

Steady-state buoyancy-driven viscous flow with measure data

Tomáš Roubíček (2001)

Mathematica Bohemica

Similarity:

Steady-state system of equations for incompressible, possibly non-Newtonean of the p -power type, viscous flow coupled with the heat equation is considered in a smooth bounded domain Ω n , n = 2 or 3, with heat sources allowed to have a natural L 1 -structure and even to be measures. The existence of a distributional solution is shown by a fixed-point technique for sufficiently small data if p > 3 / 2 (for n = 2 ) or if p > 9 / 5 (for n = 3 ).