Formule de Gutzmer pour la complexification d'une espace Riemannien symétrique

Jacques Faraut

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2002)

  • Volume: 13, Issue: 3-4, page 233-241
  • ISSN: 1120-6330

Abstract

top
A Gutzmer formula for the complexification of a Riemann symmetric space. We consider a complex manifold Ω and a real Lie group G of holomorphic automorphisms of Ω . The question we study is, for a holomorphic function f on Ω , to evaluate the integral of f 2 over a G -orbit by using the harmonic analysis of G . When Ω is an annulus in the complex plane and G the rotation group, it is solved by a classical formula which is sometimes called Gutzmer’s formula. We establish a generalization of it when Ω is a G -invariant domain in the complexification of a Riemannian symmetric space G / K .

How to cite

top

Faraut, Jacques. "Formule de Gutzmer pour la complexification d'une espace Riemannien symétrique." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 13.3-4 (2002): 233-241. <http://eudml.org/doc/252402>.

@article{Faraut2002,
author = {Faraut, Jacques},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Symmetric space; Spherical function; Gutzmer formula},
language = {fre},
month = {12},
number = {3-4},
pages = {233-241},
publisher = {Accademia Nazionale dei Lincei},
title = {Formule de Gutzmer pour la complexification d'une espace Riemannien symétrique},
url = {http://eudml.org/doc/252402},
volume = {13},
year = {2002},
}

TY - JOUR
AU - Faraut, Jacques
TI - Formule de Gutzmer pour la complexification d'une espace Riemannien symétrique
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2002/12//
PB - Accademia Nazionale dei Lincei
VL - 13
IS - 3-4
SP - 233
EP - 241
LA - fre
KW - Symmetric space; Spherical function; Gutzmer formula
UR - http://eudml.org/doc/252402
ER -

References

top
  1. Akhiezer, D.N. - Gindikin, S.G., On Stein extensions of real symmetric spaces. Math. Ann., 286, 1990, 1-12. Zbl0681.32022MR1032920DOI10.1007/BF01453562
  2. Geatti, L., Invariant domains in the complexification of a non-compact Riemannian symmetric space. Preprint, 2001. Zbl1018.32030
  3. Helgason, S., Geometric Analysis on Symmetric Spaces. A.M.S., 1994. Zbl0809.53057MR1280714
  4. Krötz, B. - Stanton, R.J., Holomorphic aspects of representations: (I) automorphic functions. Preprint, 2001. Zbl1053.22009
  5. Lassalle, M., Séries de Laurent des fonctions holomorphes dans la complexification d’un espace symétrique compact. Ann. Scient. Éc. Norm. Sup., 11, 1978, 167-210. Zbl0452.43011MR510548
  6. Lassalle, M.,L’espace de Hardy d’un domaine de Reinhardt généralisé. J. Funct. Anal., 60, 1985, 309-340. Zbl0578.32009MR780501DOI10.1016/0022-1236(85)90043-6
  7. Paley, R.E. - Wiener, N., Fourier transforms in the complex domain. A.M.S., 1934. Zbl0123.30104
  8. Valiron, G., Théorie des fonctions. Masson, 1966. Zbl0028.20801

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.