Poisson-like kernels in tube domains over light-cones

Gustavo Garrigós

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2002)

  • Volume: 13, Issue: 3-4, page 271-283
  • ISSN: 1120-6330

Abstract

top
A family of holomorphic function spaces can be defined with reproducing kernels B α z , w , obtained as real powers of the Cauchy-Szegö kernel. In this paper we study properties of the associated Poisson-like kernels: P α z , w = B α z , w 2 / B α z , z . In particular, we show boundedness of associated maximal operators, and obtain formulas for the limit of Poisson integrals in the topological boundary of the cone.

How to cite

top

Garrigós, Gustavo. "Poisson-like kernels in tube domains over light-cones." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 13.3-4 (2002): 271-283. <http://eudml.org/doc/252405>.

@article{Garrigós2002,
abstract = {A family of holomorphic function spaces can be defined with reproducing kernels $B_\{\alpha\}(z,w)$, obtained as real powers of the Cauchy-Szegö kernel. In this paper we study properties of the associated Poisson-like kernels: $P_\{\alpha\}(z,w) = |B_\{\alpha\}(z,w)|^\{2\} / B_\{\alpha\}(z,z)$. In particular, we show boundedness of associated maximal operators, and obtain formulas for the limit of Poisson integrals in the topological boundary of the cone.},
author = {Garrigós, Gustavo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Tube domain; Poisson kernel; Maximal function; Bergman space; tube domain; maximal function; Bergmann space},
language = {eng},
month = {12},
number = {3-4},
pages = {271-283},
publisher = {Accademia Nazionale dei Lincei},
title = {Poisson-like kernels in tube domains over light-cones},
url = {http://eudml.org/doc/252405},
volume = {13},
year = {2002},
}

TY - JOUR
AU - Garrigós, Gustavo
TI - Poisson-like kernels in tube domains over light-cones
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2002/12//
PB - Accademia Nazionale dei Lincei
VL - 13
IS - 3-4
SP - 271
EP - 283
AB - A family of holomorphic function spaces can be defined with reproducing kernels $B_{\alpha}(z,w)$, obtained as real powers of the Cauchy-Szegö kernel. In this paper we study properties of the associated Poisson-like kernels: $P_{\alpha}(z,w) = |B_{\alpha}(z,w)|^{2} / B_{\alpha}(z,z)$. In particular, we show boundedness of associated maximal operators, and obtain formulas for the limit of Poisson integrals in the topological boundary of the cone.
LA - eng
KW - Tube domain; Poisson kernel; Maximal function; Bergman space; tube domain; maximal function; Bergmann space
UR - http://eudml.org/doc/252405
ER -

References

top
  1. Békollé, D. - Bonami, A., Estimates for the Bergman and Szegö projections in two symmetric domains of C n . Colloq. Math., 68, 1995, 81-100. Zbl0863.47018MR1311766
  2. Békollé, D. - Bonami, A. - Garrigós, G. - Ricci, F., Littlewood-Paley decompositions and Besov spaces related to symmetric cones. Univ. Orléans, preprint 2001. 
  3. Békollé, D. - Bonami, A. - Peloso, M. - Ricci, F., Boundedness of weighted Bergman projections on tube domains over light cones. Math. Z., 237, 2001, 31-59. Zbl0983.32001MR1836772DOI10.1007/PL00004861
  4. Bonami, A., Three related problems on Bergman spaces of tube domains over symmetric cones. Rend. Mat. Acc. Lincei, s. 9, v. 13, 2002, 183-197. Zbl1225.32012MR1984099
  5. Faraut, J. - Korányi, A., Analysis on symmetric cones. Clarendon Press, Oxford1994. Zbl0841.43002MR1446489
  6. Fefferman, C., The multiplier problem for the ball. Ann. of Math., 94, 1971, 330-336. Zbl0234.42009MR296602
  7. Garrigós, G., Generalized Hardy spaces in tube domains over cones. Colloq. Math., 90 (2), 2001, 213-251. Zbl0999.42014MR1876845DOI10.4064/cm90-2-4
  8. Gelfand, I. - Shilov, G., Generalized functions I. Academic Press, New York1964. Zbl0115.33101MR166596
  9. Rossi, H. - Vergne, M., Équations de Cauchy-Riemann tangentielles associées a un domaine de Siegel. Ann. scient. Éc. Norm. Sup., 9, 1976, 31-80. Zbl0398.32018MR445019
  10. Stein, E., Some problems in harmonic analysis suggested by symmetric spaces and semi-simple Lie groups. Actes, Congrès intern. math.1, 1970, 173-189. Zbl0252.43022MR578903
  11. Stein, E., Harmonic Analysis. Princeton University Press, 1993. Zbl0821.42001MR1232192
  12. Stein, E. - Weiss, G., Fourier Analysis on Euclidean Spaces. Princeton University Press, 1971. Zbl0232.42007MR304972
  13. Stein, E. - Weiss, G. - Weiss, M., H p classes of holomorphic functions in tube domains. Proc. Nat. Acad. Sci. USA, 52, 1964, 1035-1039. Zbl0126.09405MR179386
  14. Vergne, M. - Rossi, H., Analytic continuation of the holomorphic discrete series of a semi-simple Lie group. Acta Math., 136, 1976, 1-59. Zbl0356.32020MR480883

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.