Poisson-like kernels in tube domains over light-cones
- Volume: 13, Issue: 3-4, page 271-283
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topGarrigós, Gustavo. "Poisson-like kernels in tube domains over light-cones." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 13.3-4 (2002): 271-283. <http://eudml.org/doc/252405>.
@article{Garrigós2002,
abstract = {A family of holomorphic function spaces can be defined with reproducing kernels $B_\{\alpha\}(z,w)$, obtained as real powers of the Cauchy-Szegö kernel. In this paper we study properties of the associated Poisson-like kernels: $P_\{\alpha\}(z,w) = |B_\{\alpha\}(z,w)|^\{2\} / B_\{\alpha\}(z,z)$. In particular, we show boundedness of associated maximal operators, and obtain formulas for the limit of Poisson integrals in the topological boundary of the cone.},
author = {Garrigós, Gustavo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Tube domain; Poisson kernel; Maximal function; Bergman space; tube domain; maximal function; Bergmann space},
language = {eng},
month = {12},
number = {3-4},
pages = {271-283},
publisher = {Accademia Nazionale dei Lincei},
title = {Poisson-like kernels in tube domains over light-cones},
url = {http://eudml.org/doc/252405},
volume = {13},
year = {2002},
}
TY - JOUR
AU - Garrigós, Gustavo
TI - Poisson-like kernels in tube domains over light-cones
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2002/12//
PB - Accademia Nazionale dei Lincei
VL - 13
IS - 3-4
SP - 271
EP - 283
AB - A family of holomorphic function spaces can be defined with reproducing kernels $B_{\alpha}(z,w)$, obtained as real powers of the Cauchy-Szegö kernel. In this paper we study properties of the associated Poisson-like kernels: $P_{\alpha}(z,w) = |B_{\alpha}(z,w)|^{2} / B_{\alpha}(z,z)$. In particular, we show boundedness of associated maximal operators, and obtain formulas for the limit of Poisson integrals in the topological boundary of the cone.
LA - eng
KW - Tube domain; Poisson kernel; Maximal function; Bergman space; tube domain; maximal function; Bergmann space
UR - http://eudml.org/doc/252405
ER -
References
top- Békollé, D. - Bonami, A., Estimates for the Bergman and Szegö projections in two symmetric domains of . Colloq. Math., 68, 1995, 81-100. Zbl0863.47018MR1311766
- Békollé, D. - Bonami, A. - Garrigós, G. - Ricci, F., Littlewood-Paley decompositions and Besov spaces related to symmetric cones. Univ. Orléans, preprint 2001.
- Békollé, D. - Bonami, A. - Peloso, M. - Ricci, F., Boundedness of weighted Bergman projections on tube domains over light cones. Math. Z., 237, 2001, 31-59. Zbl0983.32001MR1836772DOI10.1007/PL00004861
- Bonami, A., Three related problems on Bergman spaces of tube domains over symmetric cones. Rend. Mat. Acc. Lincei, s. 9, v. 13, 2002, 183-197. Zbl1225.32012MR1984099
- Faraut, J. - Korányi, A., Analysis on symmetric cones. Clarendon Press, Oxford1994. Zbl0841.43002MR1446489
- Fefferman, C., The multiplier problem for the ball. Ann. of Math., 94, 1971, 330-336. Zbl0234.42009MR296602
- Garrigós, G., Generalized Hardy spaces in tube domains over cones. Colloq. Math., 90 (2), 2001, 213-251. Zbl0999.42014MR1876845DOI10.4064/cm90-2-4
- Gelfand, I. - Shilov, G., Generalized functions I. Academic Press, New York1964. Zbl0115.33101MR166596
- Rossi, H. - Vergne, M., Équations de Cauchy-Riemann tangentielles associées a un domaine de Siegel. Ann. scient. Éc. Norm. Sup., 9, 1976, 31-80. Zbl0398.32018MR445019
- Stein, E., Some problems in harmonic analysis suggested by symmetric spaces and semi-simple Lie groups. Actes, Congrès intern. math.1, 1970, 173-189. Zbl0252.43022MR578903
- Stein, E., Harmonic Analysis. Princeton University Press, 1993. Zbl0821.42001MR1232192
- Stein, E. - Weiss, G., Fourier Analysis on Euclidean Spaces. Princeton University Press, 1971. Zbl0232.42007MR304972
- Stein, E. - Weiss, G. - Weiss, M., classes of holomorphic functions in tube domains. Proc. Nat. Acad. Sci. USA, 52, 1964, 1035-1039. Zbl0126.09405MR179386
- Vergne, M. - Rossi, H., Analytic continuation of the holomorphic discrete series of a semi-simple Lie group. Acta Math., 136, 1976, 1-59. Zbl0356.32020MR480883
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.