Équations de Cauchy-Riemann tangentielles associées à un domaine de Siegel
Annales scientifiques de l'École Normale Supérieure (1976)
- Volume: 9, Issue: 1, page 31-80
- ISSN: 0012-9593
Access Full Article
topHow to cite
topRossi, H., and Vergne, M.. "Équations de Cauchy-Riemann tangentielles associées à un domaine de Siegel." Annales scientifiques de l'École Normale Supérieure 9.1 (1976): 31-80. <http://eudml.org/doc/81976>.
@article{Rossi1976,
author = {Rossi, H., Vergne, M.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Siegel Domain; Tangential Cauchy-Riemann Equation; Fourier Transformation},
language = {fre},
number = {1},
pages = {31-80},
publisher = {Elsevier},
title = {Équations de Cauchy-Riemann tangentielles associées à un domaine de Siegel},
url = {http://eudml.org/doc/81976},
volume = {9},
year = {1976},
}
TY - JOUR
AU - Rossi, H.
AU - Vergne, M.
TI - Équations de Cauchy-Riemann tangentielles associées à un domaine de Siegel
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1976
PB - Elsevier
VL - 9
IS - 1
SP - 31
EP - 80
LA - fre
KW - Siegel Domain; Tangential Cauchy-Riemann Equation; Fourier Transformation
UR - http://eudml.org/doc/81976
ER -
References
top- [1] L. AUSLANDER and B. KOSTANT, Polarizations and Unitary Representations of Solvable Lie Groups, Invent. Math., vol. 14, 1971), p. 255-344). Zbl0233.22005MR45 #2092
- [1 bis] V. BARGMANN, On a Hilbert Space of Analytic Functions and on Associated Integral Transform (Comm. in Pure and Appl. Math., vol. 14, 1961, p. 187-214). Zbl0107.09102MR28 #486
- [2] P. BERNAT et co-auteurs, Représentations des groupes de Lie résolubles, Dunod, Paris, 1972. Zbl0248.22012MR56 #3183
- [3] G. FOLLAND and J. J. KOHN, The Neumann Problem for the Cauchy-Riemann Complex (Ann. of Math. Studies, n° 75, Princeton University Press, Princeton, 1972). Zbl0247.35093MR57 #1573
- [4] S. GREENFIELD, Cauchy-Riemann Equations in Several Variables (Ann. S.N.S., Pisa, (3), vol. 22, 1968, p. 275-314). Zbl0159.37502MR38 #6097
- [5] L. R. HUNT and R. O. WELLS, Extensions of C. R. Functions, Preprint, 1974.
- [6] S. KANEYUKI, Homogeneous Bounded Domains and Siegel Domains (Lecture Notes in Math., n° 241, Springer-Verlag, Berlin, 1971). Zbl0241.32011MR49 #3231
- [7] J. J. KOHN, Boundaries of Complex Manifolds (Proc. Conf. Complex Analysis, University of Minnesota Press, 1964). Zbl0166.36003
- [8] A. KORANYI and E. STEIN, H2 Spaces of Generalized Half-Planes (Studia Mathematica, vol. 44, 1972, p. 379-388). Zbl0224.32004MR55 #8421
- [9] A. KORANYI and J. WOLF, Realization of Hermition symmetric Spaces as Generalized Half-Planes (Ann. of Math., vol. 81, 1965, p. 265-288). Zbl0137.27402MR30 #4980
- [10] H. LEWY, On the Local Caracter of the Solution of an Atypical Linear Differential in Three Variables (Ann. of Math., (2), vol. 64, 1956, p. 514-522). Zbl0074.06204MR18,473b
- [11] C. C. MOORE, Compactification of Symmetric Spaces II (Amer. J. Math., vol. 86, 1964, p. 358-378). Zbl0156.03202MR28 #5147
- [12] OGDEN and S. VAGI, Harmonic Analysis and H2 functions on Siegel Domains of type II (Proc. Nat. Acad. Sci., U.S.A., 69, 1972, p. 11-14). Zbl0239.43009MR46 #5946
- [13] H. ROSSI and M. VERGNE, (a) Representations of Certain Solvable Lie Groups on Hilbert Spaces of Holomorphic Functions and... (J. of Funct. Anal., vol. 13, 1973, p. 324-389) ; (b) Analytic Continuation of the Holomorphic Discrete Series of a Semi-Simple Lie Group (à paraître à Acta. Math.). Zbl0356.32020MR53 #10989
- [14] I. I. PIATECKII-SAPIRO, Geometry of Classical Domains and the Theory of Automorphic Functions, Fitzmatgiz, Moscou, 1961, Dunod, Paris, 1966, Gordon and Breach, New York, 1969. Zbl0142.05101
- [15] E. STEIN, Boundary Behavior of Holomorphic Functions of Several Complex Variables (Mathematical Notes, Princeton University Press, 1972). Zbl0242.32005MR57 #12890
- [16] S. VAGI, On the Boundary Values of Holomorphic Functions (Rev. Un. Mat. Argentina, vol. 25, 1970, p. 123-136). Zbl0248.32022MR47 #7343
- [17] M. VERGNE, Étude de certaines représentations induites d'un groupe de Lie résoluble exponentiel (Annn. scient. Éc. Norm. Sup., vol. 3, 1970, p. 353-384). Zbl0221.22014MR43 #4966
- [18] R. O. WELLS, Function Theory and Differentiable Submanifolds, Contributions to Analysis (ed. AHLFORS et coll.) Academic Press, Inc. 1974, p. 407-441. Zbl0293.32001MR50 #10322
- [19] H. WEYL, Orthogonal Projection in Potential Theory (Duke Math. J. vol. 7, 1970, p. 411-444). Zbl0026.02001MR2,202aJFM66.0444.01
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.