Équations de Cauchy-Riemann tangentielles associées à un domaine de Siegel

H. Rossi; M. Vergne

Annales scientifiques de l'École Normale Supérieure (1976)

  • Volume: 9, Issue: 1, page 31-80
  • ISSN: 0012-9593

How to cite

top

Rossi, H., and Vergne, M.. "Équations de Cauchy-Riemann tangentielles associées à un domaine de Siegel." Annales scientifiques de l'École Normale Supérieure 9.1 (1976): 31-80. <http://eudml.org/doc/81976>.

@article{Rossi1976,
author = {Rossi, H., Vergne, M.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Siegel Domain; Tangential Cauchy-Riemann Equation; Fourier Transformation},
language = {fre},
number = {1},
pages = {31-80},
publisher = {Elsevier},
title = {Équations de Cauchy-Riemann tangentielles associées à un domaine de Siegel},
url = {http://eudml.org/doc/81976},
volume = {9},
year = {1976},
}

TY - JOUR
AU - Rossi, H.
AU - Vergne, M.
TI - Équations de Cauchy-Riemann tangentielles associées à un domaine de Siegel
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1976
PB - Elsevier
VL - 9
IS - 1
SP - 31
EP - 80
LA - fre
KW - Siegel Domain; Tangential Cauchy-Riemann Equation; Fourier Transformation
UR - http://eudml.org/doc/81976
ER -

References

top
  1. [1] L. AUSLANDER and B. KOSTANT, Polarizations and Unitary Representations of Solvable Lie Groups, Invent. Math., vol. 14, 1971), p. 255-344). Zbl0233.22005MR45 #2092
  2. [1 bis] V. BARGMANN, On a Hilbert Space of Analytic Functions and on Associated Integral Transform (Comm. in Pure and Appl. Math., vol. 14, 1961, p. 187-214). Zbl0107.09102MR28 #486
  3. [2] P. BERNAT et co-auteurs, Représentations des groupes de Lie résolubles, Dunod, Paris, 1972. Zbl0248.22012MR56 #3183
  4. [3] G. FOLLAND and J. J. KOHN, The Neumann Problem for the Cauchy-Riemann Complex (Ann. of Math. Studies, n° 75, Princeton University Press, Princeton, 1972). Zbl0247.35093MR57 #1573
  5. [4] S. GREENFIELD, Cauchy-Riemann Equations in Several Variables (Ann. S.N.S., Pisa, (3), vol. 22, 1968, p. 275-314). Zbl0159.37502MR38 #6097
  6. [5] L. R. HUNT and R. O. WELLS, Extensions of C. R. Functions, Preprint, 1974. 
  7. [6] S. KANEYUKI, Homogeneous Bounded Domains and Siegel Domains (Lecture Notes in Math., n° 241, Springer-Verlag, Berlin, 1971). Zbl0241.32011MR49 #3231
  8. [7] J. J. KOHN, Boundaries of Complex Manifolds (Proc. Conf. Complex Analysis, University of Minnesota Press, 1964). Zbl0166.36003
  9. [8] A. KORANYI and E. STEIN, H2 Spaces of Generalized Half-Planes (Studia Mathematica, vol. 44, 1972, p. 379-388). Zbl0224.32004MR55 #8421
  10. [9] A. KORANYI and J. WOLF, Realization of Hermition symmetric Spaces as Generalized Half-Planes (Ann. of Math., vol. 81, 1965, p. 265-288). Zbl0137.27402MR30 #4980
  11. [10] H. LEWY, On the Local Caracter of the Solution of an Atypical Linear Differential in Three Variables (Ann. of Math., (2), vol. 64, 1956, p. 514-522). Zbl0074.06204MR18,473b
  12. [11] C. C. MOORE, Compactification of Symmetric Spaces II (Amer. J. Math., vol. 86, 1964, p. 358-378). Zbl0156.03202MR28 #5147
  13. [12] OGDEN and S. VAGI, Harmonic Analysis and H2 functions on Siegel Domains of type II (Proc. Nat. Acad. Sci., U.S.A., 69, 1972, p. 11-14). Zbl0239.43009MR46 #5946
  14. [13] H. ROSSI and M. VERGNE, (a) Representations of Certain Solvable Lie Groups on Hilbert Spaces of Holomorphic Functions and... (J. of Funct. Anal., vol. 13, 1973, p. 324-389) ; (b) Analytic Continuation of the Holomorphic Discrete Series of a Semi-Simple Lie Group (à paraître à Acta. Math.). Zbl0356.32020MR53 #10989
  15. [14] I. I. PIATECKII-SAPIRO, Geometry of Classical Domains and the Theory of Automorphic Functions, Fitzmatgiz, Moscou, 1961, Dunod, Paris, 1966, Gordon and Breach, New York, 1969. Zbl0142.05101
  16. [15] E. STEIN, Boundary Behavior of Holomorphic Functions of Several Complex Variables (Mathematical Notes, Princeton University Press, 1972). Zbl0242.32005MR57 #12890
  17. [16] S. VAGI, On the Boundary Values of Holomorphic Functions (Rev. Un. Mat. Argentina, vol. 25, 1970, p. 123-136). Zbl0248.32022MR47 #7343
  18. [17] M. VERGNE, Étude de certaines représentations induites d'un groupe de Lie résoluble exponentiel (Annn. scient. Éc. Norm. Sup., vol. 3, 1970, p. 353-384). Zbl0221.22014MR43 #4966
  19. [18] R. O. WELLS, Function Theory and Differentiable Submanifolds, Contributions to Analysis (ed. AHLFORS et coll.) Academic Press, Inc. 1974, p. 407-441. Zbl0293.32001MR50 #10322
  20. [19] H. WEYL, Orthogonal Projection in Potential Theory (Duke Math. J. vol. 7, 1970, p. 411-444). Zbl0026.02001MR2,202aJFM66.0444.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.