On a class of inner maps

Edoardo Vesentini

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2005)

  • Volume: 16, Issue: 4, page 215-226
  • ISSN: 1120-6330

Abstract

top
Let f be a continuous map of the closure Δ ¯ of the open unit disc Δ of C into a unital associative Banach algebra A , whose restriction to Δ is holomorphic, and which satisfies the condition whereby 0 σ f z Δ ¯ for all z Δ and σ f z Δ whenever z Δ (where σ x is the spectrum of any x A ). One of the basic results of the present paper is that f is , that is to say, σ f z is then a compact subset of Δ that does not depend on z for all z Δ ¯ . This fact will be applied to holomorphic self-maps of the open unit ball of some J * -algebra and in particular of any unital C * -algebra, investigating some cases in which not only the spectra but the maps themselves are necessarily constant.

How to cite

top

Vesentini, Edoardo. "On a class of inner maps." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 16.4 (2005): 215-226. <http://eudml.org/doc/252420>.

@article{Vesentini2005,
abstract = { Let $f$ be a continuous map of the closure $\overline\{\Delta\}$ of the open unit disc $\Delta$ of $\mathbb\{C\}$ into a unital associative Banach algebra $\mathcal\{A\}$, whose restriction to $\Delta$ is holomorphic, and which satisfies the condition whereby $0 \notin \sigma(f(z)) \subset \overline\{\Delta\}$ for all $z \in \Delta$ and $\sigma(f(z)) \subset \partial \Delta$ whenever $z \in \partial \Delta$ (where $\sigma(x)$ is the spectrum of any $x \in \mathcal\{A\}$). One of the basic results of the present paper is that $f$ is , that is to say, $\sigma(f(z))$ is then a compact subset of $\partial \Delta$ that does not depend on $z$ for all $z \in \overline\{\Delta\}$. This fact will be applied to holomorphic self-maps of the open unit ball of some $J^\{*\}$-algebra and in particular of any unital $C^\{*\}$-algebra, investigating some cases in which not only the spectra but the maps themselves are necessarily constant.},
author = {Vesentini, Edoardo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Associative Banach algebra; Holomorphic map; Spectrum; Spectral radius; associative Banach space; holomorphic map; spectrum; spectral radius},
language = {eng},
month = {12},
number = {4},
pages = {215-226},
publisher = {Accademia Nazionale dei Lincei},
title = {On a class of inner maps},
url = {http://eudml.org/doc/252420},
volume = {16},
year = {2005},
}

TY - JOUR
AU - Vesentini, Edoardo
TI - On a class of inner maps
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2005/12//
PB - Accademia Nazionale dei Lincei
VL - 16
IS - 4
SP - 215
EP - 226
AB - Let $f$ be a continuous map of the closure $\overline{\Delta}$ of the open unit disc $\Delta$ of $\mathbb{C}$ into a unital associative Banach algebra $\mathcal{A}$, whose restriction to $\Delta$ is holomorphic, and which satisfies the condition whereby $0 \notin \sigma(f(z)) \subset \overline{\Delta}$ for all $z \in \Delta$ and $\sigma(f(z)) \subset \partial \Delta$ whenever $z \in \partial \Delta$ (where $\sigma(x)$ is the spectrum of any $x \in \mathcal{A}$). One of the basic results of the present paper is that $f$ is , that is to say, $\sigma(f(z))$ is then a compact subset of $\partial \Delta$ that does not depend on $z$ for all $z \in \overline{\Delta}$. This fact will be applied to holomorphic self-maps of the open unit ball of some $J^{*}$-algebra and in particular of any unital $C^{*}$-algebra, investigating some cases in which not only the spectra but the maps themselves are necessarily constant.
LA - eng
KW - Associative Banach algebra; Holomorphic map; Spectrum; Spectral radius; associative Banach space; holomorphic map; spectrum; spectral radius
UR - http://eudml.org/doc/252420
ER -

References

top
  1. AUPETIT, B., Propriétés spectrales des algèbres de Banach. Lecture Notes in Mathematics, 735, Springer-Verlag, Berlin-Heidelberg-New York, 1979. Zbl0409.46054MR549769
  2. FRANZONI, T. - VESENTINI, E., Holomorphic maps and invariant distances. North Holland, Amsterdam-New York-Oxford, 1980. Zbl0447.46040MR563329
  3. HARRIS, L.A., Bounded symmetric homogeneous domains in infinite dimensional spaces. In: T.L. HAYDEN - T.J. SUFFRIDGE (eds.), Proceedings on infinite dimensional holomorphy, University of Kentucky 1973. Lecture Notes in Mathematics, 364, Springer, Berlin1974, 13-40. Zbl0293.46049MR407330
  4. HOFFMAN, K., Banach spaces of analytic functions. Prentice-Hall, Englewood Cliffs, N.J., 1962. Zbl0117.34001MR133008
  5. JARNICKI, M. - PFLUG, P., Invariant distances and metrics in complex analysis. Walter de Gruyter, Berlin-New York1993. Zbl0789.32001MR1242120DOI10.1515/9783110870312
  6. OKA, K., Note sur les familles de fonctions analytiques multiformes etc. J. Sci. Hiroshima Univ. Ser. A, 4, 1934, 93-98. Zbl0011.31403
  7. RUDIN, W., Function theory in the unit ball of C n . Springer-Verlag, New York-Heidelberg-Berlin1980. Zbl1139.32001MR601594
  8. RUDIN, W., New constructions of functions holomorphic in the unit ball C n . Conference Board Math. Sci., 63, 1985. Zbl1187.32001MR840468
  9. SAKAI, S., C * -algebras and W * -algebras. Springer-Verlag, New York-Heidelberg-Berlin1971. Zbl1024.46001MR442701
  10. SLODKOWSKI, Z., Analytic set-valued functions and spectra. Math. Ann., 256, 1981, 363-386. Zbl0452.46028MR626955DOI10.1007/BF01679703
  11. VESENTINI, E., Maximum theorems for spectra. Essays on topology and related topics, Mémoires dédiés à Georges de Rham, Springer-Verlag, Berlin-Heidelberg-New York1970, 111-117. Zbl0195.41903MR271731
  12. VESENTINI, E., Maximum theorems for vector valued holomorphic functions. University of Maryland Technical Report, 69-132, 1969; Rend. Sem. Mat. Fis. Milano, 40, 1970, 1-34. Zbl0221.58007MR287299
  13. VESENTINI, E., Complex geodesies. Compositio Math., 44, 1981, 375-394. Zbl0488.30015MR662466
  14. VESENTINI, E., Holomorphic isometries of spin-factors. Rend. Sem. Mat. Univ. Politec. Torino, 50, 4, 1992, 427-455. Zbl0791.46031MR1261453

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.