On a class of inner maps
- Volume: 16, Issue: 4, page 215-226
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topVesentini, Edoardo. "On a class of inner maps." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 16.4 (2005): 215-226. <http://eudml.org/doc/252420>.
@article{Vesentini2005,
abstract = { Let $f$ be a continuous map of the closure $\overline\{\Delta\}$ of the open unit disc $\Delta$ of $\mathbb\{C\}$ into a unital associative Banach algebra $\mathcal\{A\}$, whose restriction to $\Delta$ is holomorphic, and which satisfies the condition whereby $0 \notin \sigma(f(z)) \subset \overline\{\Delta\}$ for all $z \in \Delta$ and $\sigma(f(z)) \subset \partial \Delta$ whenever $z \in \partial \Delta$ (where $\sigma(x)$ is the spectrum of any $x \in \mathcal\{A\}$). One of the basic results of the present paper is that $f$ is , that is to say, $\sigma(f(z))$ is then a compact subset of $\partial \Delta$ that does not depend on $z$ for all $z \in \overline\{\Delta\}$. This fact will be applied to holomorphic self-maps of the open unit ball of some $J^\{*\}$-algebra and in particular of any unital $C^\{*\}$-algebra, investigating some cases in which not only the spectra but the maps themselves are necessarily constant.},
author = {Vesentini, Edoardo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Associative Banach algebra; Holomorphic map; Spectrum; Spectral radius; associative Banach space; holomorphic map; spectrum; spectral radius},
language = {eng},
month = {12},
number = {4},
pages = {215-226},
publisher = {Accademia Nazionale dei Lincei},
title = {On a class of inner maps},
url = {http://eudml.org/doc/252420},
volume = {16},
year = {2005},
}
TY - JOUR
AU - Vesentini, Edoardo
TI - On a class of inner maps
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2005/12//
PB - Accademia Nazionale dei Lincei
VL - 16
IS - 4
SP - 215
EP - 226
AB - Let $f$ be a continuous map of the closure $\overline{\Delta}$ of the open unit disc $\Delta$ of $\mathbb{C}$ into a unital associative Banach algebra $\mathcal{A}$, whose restriction to $\Delta$ is holomorphic, and which satisfies the condition whereby $0 \notin \sigma(f(z)) \subset \overline{\Delta}$ for all $z \in \Delta$ and $\sigma(f(z)) \subset \partial \Delta$ whenever $z \in \partial \Delta$ (where $\sigma(x)$ is the spectrum of any $x \in \mathcal{A}$). One of the basic results of the present paper is that $f$ is , that is to say, $\sigma(f(z))$ is then a compact subset of $\partial \Delta$ that does not depend on $z$ for all $z \in \overline{\Delta}$. This fact will be applied to holomorphic self-maps of the open unit ball of some $J^{*}$-algebra and in particular of any unital $C^{*}$-algebra, investigating some cases in which not only the spectra but the maps themselves are necessarily constant.
LA - eng
KW - Associative Banach algebra; Holomorphic map; Spectrum; Spectral radius; associative Banach space; holomorphic map; spectrum; spectral radius
UR - http://eudml.org/doc/252420
ER -
References
top- AUPETIT, B., Propriétés spectrales des algèbres de Banach. Lecture Notes in Mathematics, 735, Springer-Verlag, Berlin-Heidelberg-New York, 1979. Zbl0409.46054MR549769
- FRANZONI, T. - VESENTINI, E., Holomorphic maps and invariant distances. North Holland, Amsterdam-New York-Oxford, 1980. Zbl0447.46040MR563329
- HARRIS, L.A., Bounded symmetric homogeneous domains in infinite dimensional spaces. In: T.L. HAYDEN - T.J. SUFFRIDGE (eds.), Proceedings on infinite dimensional holomorphy, University of Kentucky 1973. Lecture Notes in Mathematics, 364, Springer, Berlin1974, 13-40. Zbl0293.46049MR407330
- HOFFMAN, K., Banach spaces of analytic functions. Prentice-Hall, Englewood Cliffs, N.J., 1962. Zbl0117.34001MR133008
- JARNICKI, M. - PFLUG, P., Invariant distances and metrics in complex analysis. Walter de Gruyter, Berlin-New York1993. Zbl0789.32001MR1242120DOI10.1515/9783110870312
- OKA, K., Note sur les familles de fonctions analytiques multiformes etc. J. Sci. Hiroshima Univ. Ser. A, 4, 1934, 93-98. Zbl0011.31403
- RUDIN, W., Function theory in the unit ball of . Springer-Verlag, New York-Heidelberg-Berlin1980. Zbl1139.32001MR601594
- RUDIN, W., New constructions of functions holomorphic in the unit ball . Conference Board Math. Sci., 63, 1985. Zbl1187.32001MR840468
- SAKAI, S., -algebras and -algebras. Springer-Verlag, New York-Heidelberg-Berlin1971. Zbl1024.46001MR442701
- SLODKOWSKI, Z., Analytic set-valued functions and spectra. Math. Ann., 256, 1981, 363-386. Zbl0452.46028MR626955DOI10.1007/BF01679703
- VESENTINI, E., Maximum theorems for spectra. Essays on topology and related topics, Mémoires dédiés à Georges de Rham, Springer-Verlag, Berlin-Heidelberg-New York1970, 111-117. Zbl0195.41903MR271731
- VESENTINI, E., Maximum theorems for vector valued holomorphic functions. University of Maryland Technical Report, 69-132, 1969; Rend. Sem. Mat. Fis. Milano, 40, 1970, 1-34. Zbl0221.58007MR287299
- VESENTINI, E., Complex geodesies. Compositio Math., 44, 1981, 375-394. Zbl0488.30015MR662466
- VESENTINI, E., Holomorphic isometries of spin-factors. Rend. Sem. Mat. Univ. Politec. Torino, 50, 4, 1992, 427-455. Zbl0791.46031MR1261453
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.