Displaying similar documents to “Two identities related to Dirichlet character of polynomials”

On the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum

Yongguang Du, Huaning Liu (2013)

Czechoslovak Mathematical Journal

Similarity:

The main purpose of the paper is to study, using the analytic method and the property of the Ramanujan’s sum, the computational problem of the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum. For integers m , n , k , q , with k 1 and q 3 , and Dirichlet characters χ , χ ¯ modulo q we define a mixed exponential sum C ( m , n ; k ; χ ; χ ¯ ; q ) = a = 1 q w i d t h 0 p t h e i g h t 1 e m ' χ ( a ) G k ( a , χ ¯ ) e m a k + n a k ¯ q , with Dirichlet character χ and general Gauss sum G k ( a , χ ¯ ) as coefficient, where ' denotes the summation over all a such that ( a , q ) = 1 , a a ¯ 1 mod q and e ( y ) = e 2 π i y . We mean value...

A hybrid mean value involving two-term exponential sums and polynomial character sums

Han Di (2014)

Czechoslovak Mathematical Journal

Similarity:

Let q 3 be a positive integer. For any integers m and n , the two-term exponential sum C ( m , n , k ; q ) is defined by C ( m , n , k ; q ) = a = 1 q e ( ( m a k + n a ) / q ) , where e ( y ) = e 2 π i y . In this paper, we use the properties of Gauss sums and the estimate for Dirichlet character of polynomials to study the mean value problem involving two-term exponential sums and Dirichlet character of polynomials, and give an interesting asymptotic formula for it.

Second moments of Dirichlet L -functions weighted by Kloosterman sums

Tingting Wang (2012)

Czechoslovak Mathematical Journal

Similarity:

For the general modulo q 3 and a general multiplicative character χ modulo q , the upper bound estimate of | S ( m , n , 1 , χ , q ) | is a very complex and difficult problem. In most cases, the Weil type bound for | S ( m , n , 1 , χ , q ) | is valid, but there are some counterexamples. Although the value distribution of | S ( m , n , 1 , χ , q ) | is very complicated, it also exhibits many good distribution properties in some number theory problems. The main purpose of this paper is using the estimate for k -th Kloosterman sums and analytic method to study the asymptotic...

On a kind of generalized Lehmer problem

Rong Ma, Yulong Zhang (2012)

Czechoslovak Mathematical Journal

Similarity:

For 1 c p - 1 , let E 1 , E 2 , , E m be fixed numbers of the set { 0 , 1 } , and let a 1 , a 2 , , a m ( 1 a i p , i = 1 , 2 , , m ) be of opposite parity with E 1 , E 2 , , E m respectively such that a 1 a 2 a m c ( mod p ) . Let N ( c , m , p ) = 1 2 m - 1 a 1 = 1 p - 1 a 2 = 1 p - 1 a m = 1 p - 1 a 1 a 2 a m c ( mod p ) ( 1 - ( - 1 ) a 1 + E 1 ) ( 1 - ( - 1 ) a 2 + E 2 ) ( 1 - ( - 1 ) a m + E m ) . We are interested in the mean value of the sums c = 1 p - 1 E 2 ( c , m , p ) , where E ( c , m , p ) = N ( c , m , p ) - ( ( p - 1 ) m - 1 ) / ( 2 m - 1 ) for the odd prime p and any integers m 2 . When m = 2 , c = 1 , it is the Lehmer problem. In this paper, we generalize the Lehmer problem and use analytic method to give an interesting asymptotic formula of the generalized Lehmer problem.