-porosity is separably determined
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 1, page 219-234
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCúth, Marek, and Rmoutil, Martin. "$\sigma $-porosity is separably determined." Czechoslovak Mathematical Journal 63.1 (2013): 219-234. <http://eudml.org/doc/252461>.
@article{Cúth2013,
abstract = {We prove a separable reduction theorem for $\sigma $-porosity of Suslin sets. In particular, if $A$ is a Suslin subset in a Banach space $X$, then each separable subspace of $X$ can be enlarged to a separable subspace $V$ such that $A$ is $\sigma $-porous in $X$ if and only if $A\cap V$ is $\sigma $-porous in $V$. Such a result is proved for several types of $\sigma $-porosity. The proof is done using the method of elementary submodels, hence the results can be combined with other separable reduction theorems. As an application we extend a theorem of L. Zajíček on differentiability of Lipschitz functions on separable Asplund spaces to the nonseparable setting.},
author = {Cúth, Marek, Rmoutil, Martin},
journal = {Czechoslovak Mathematical Journal},
keywords = {elementary submodel; separable reduction; porous set; $\sigma $-porous set; -porous set; separable reduction; elementary submodel},
language = {eng},
number = {1},
pages = {219-234},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$\sigma $-porosity is separably determined},
url = {http://eudml.org/doc/252461},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Cúth, Marek
AU - Rmoutil, Martin
TI - $\sigma $-porosity is separably determined
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 1
SP - 219
EP - 234
AB - We prove a separable reduction theorem for $\sigma $-porosity of Suslin sets. In particular, if $A$ is a Suslin subset in a Banach space $X$, then each separable subspace of $X$ can be enlarged to a separable subspace $V$ such that $A$ is $\sigma $-porous in $X$ if and only if $A\cap V$ is $\sigma $-porous in $V$. Such a result is proved for several types of $\sigma $-porosity. The proof is done using the method of elementary submodels, hence the results can be combined with other separable reduction theorems. As an application we extend a theorem of L. Zajíček on differentiability of Lipschitz functions on separable Asplund spaces to the nonseparable setting.
LA - eng
KW - elementary submodel; separable reduction; porous set; $\sigma $-porous set; -porous set; separable reduction; elementary submodel
UR - http://eudml.org/doc/252461
ER -
References
top- Cúth, M., 10.4064/fm219-3-1, Fundam. Math. 219 191-222 (2012). (2012) MR3001239DOI10.4064/fm219-3-1
- Dow, A., An introduction to applications of elementary submodels to topology, Topology Proc. 13 (1988), 17-72. (1988) Zbl0696.03024MR1031969
- Kruger, A. Y., 10.1023/A:1023673105317, J. Math. Sci., New York 116 (2003), 3325-3358. (2003) Zbl1039.49021MR1995438DOI10.1023/A:1023673105317
- Kubiś, W., 10.1016/j.jmaa.2008.07.006, J. Math. Anal. Appl. 350 (2009), 758-776. (2009) Zbl1166.46008MR2474810DOI10.1016/j.jmaa.2008.07.006
- Kunen, K., Set Theory. An Introduction to Independence Proofs. 2nd print, Studies in Logic and the Foundations of Mathematics, 102 North-Holland, Amsterdam (1983). (1983) Zbl0534.03026MR0756630
- Lindenstrauss, J., Preiss, D., Tišer, J., Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces, Annals of Mathematics Studies 179 Princeton, NJ: Princeton University Press (2012). (2012) Zbl1241.26001MR2884141
- Rmoutil, M., 10.1007/s10587-013-0014-4, Czech. Math. J. 63 (2013), 205-217. (2013) MR3035507DOI10.1007/s10587-013-0014-4
- Zajíek, L., Sets of -porosity and sets of -porosity , Čas. Pěst. Mat. 101 (1976), 350-359. (1976) MR0457731
- Zajíek, L., A generalization of an Ekeland-Lebourg theorem and the differentiability of distance functions, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 3 (1984), 403-410. (1984) MR0744405
- Zajíek, L., 10.2307/44151885, Real Anal. Exch. 13 (1987/88), 314-350. (1987) MR0943561DOI10.2307/44151885
- Zajíek, L., Fréchet differentiability, strict differentiability and subdifferentiability, Czech. Math. J. 41 (1991), 471-489. (1991) MR1117801
- Zajíek, L., Products of non--porous sets and Foran systems, Atti Semin. Mat. Fis. Univ. Modena 44 (1996), 497-505. (1996) MR1428780
- Zajíek, L., 10.1155/AAA.2005.509, Abstr. Appl. Anal. 5 (2005), 509-534. (2005) MR2201041DOI10.1155/AAA.2005.509
- Zajíek, L., Zelený, M., Inscribing compact non--porous sets into analytic non--porous sets, Fundam. Math. 185 (2005), 19-39. (2005) MR2161750
- Zelený, M., Pelant, J., The structure of the -ideal of -porous sets, Commentat. Math. Univ. Carol. 45 (2004), 37-72. (2004) Zbl1101.28001MR2076859
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.