Spaces not distinguishing pointwise and -quasinormal convergence
Pratulananda Das; Debraj Chandra
Commentationes Mathematicae Universitatis Carolinae (2013)
- Volume: 54, Issue: 1, page 83-96
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDas, Pratulananda, and Chandra, Debraj. "Spaces not distinguishing pointwise and $\mathcal {I}$-quasinormal convergence." Commentationes Mathematicae Universitatis Carolinae 54.1 (2013): 83-96. <http://eudml.org/doc/252493>.
@article{Das2013,
abstract = {In this paper we extend the notion of quasinormal convergence via ideals and consider the notion of $\mathcal \{I\}$-quasinormal convergence. We then introduce the notion of $\mathcal \{I\}QN (\mathcal \{I\}wQN)$ space as a topological space in which every sequence of continuous real valued functions pointwise converging to $0$, is also $\mathcal \{I\}$-quasinormally convergent to $0$ (has a subsequence which is $\mathcal \{I\}$-quasinormally convergent to $0$) and make certain observations on those spaces.},
author = {Das, Pratulananda, Chandra, Debraj},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {ideal; filter; $\mathcal \{I\}$-quasinormal convergence; Chain Condition; $AP$-ideal; $\mathcal \{I\}QN$ space; $\mathcal \{I\}wQN$ space; -quasinormal convergence; countably generated ideal; -ideal; space; space},
language = {eng},
number = {1},
pages = {83-96},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Spaces not distinguishing pointwise and $\mathcal \{I\}$-quasinormal convergence},
url = {http://eudml.org/doc/252493},
volume = {54},
year = {2013},
}
TY - JOUR
AU - Das, Pratulananda
AU - Chandra, Debraj
TI - Spaces not distinguishing pointwise and $\mathcal {I}$-quasinormal convergence
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 1
SP - 83
EP - 96
AB - In this paper we extend the notion of quasinormal convergence via ideals and consider the notion of $\mathcal {I}$-quasinormal convergence. We then introduce the notion of $\mathcal {I}QN (\mathcal {I}wQN)$ space as a topological space in which every sequence of continuous real valued functions pointwise converging to $0$, is also $\mathcal {I}$-quasinormally convergent to $0$ (has a subsequence which is $\mathcal {I}$-quasinormally convergent to $0$) and make certain observations on those spaces.
LA - eng
KW - ideal; filter; $\mathcal {I}$-quasinormal convergence; Chain Condition; $AP$-ideal; $\mathcal {I}QN$ space; $\mathcal {I}wQN$ space; -quasinormal convergence; countably generated ideal; -ideal; space; space
UR - http://eudml.org/doc/252493
ER -
References
top- Balcar B., Pelant J., Simon P., The space of ultrafilters on covered by nowhere dense sets, Fund. Math. 110 (1980), 11–24. MR0600576
- Balcerzak M., Dems K., Komisarski A., 10.1016/j.jmaa.2006.05.040, J. Math. Anal. Appl. 328 (2007), no. 1, 715–729. MR2285579DOI10.1016/j.jmaa.2006.05.040
- Bukovská Z., Thin sets in trigonometrical series and quasinormal convergence, Math. Slovaca 40 (1990), 53–62. Zbl0733.43003MR1094972
- Bukovská Z., Quasinormal convergence, Math. Slovaca 41 (1991), no. 2, 137–146. Zbl0757.40004MR1108577
- Bukovský L., Reclaw I., Repický M., 10.1016/0166-8641(91)90098-7, Topology Appl. 41 (1991), no. 1–2, 25–40. Zbl0768.54025MR1129696DOI10.1016/0166-8641(91)90098-7
- Bukovský L., Reclaw I., Repický M., 10.1016/S0166-8641(99)00226-6, Topology Appl. 112 (2001), no. 1, 13–40. MR1815270DOI10.1016/S0166-8641(99)00226-6
- Bukovský L., Haleš J., 10.1016/j.topol.2006.09.008, Topology Appl. 154 (2007), no. 4, 848–858. Zbl1117.54003MR2294632DOI10.1016/j.topol.2006.09.008
- Császár Á., Laczkovich M., Discrete and equal convergence, Studia Sci. Math. Hungar. 10 (1975), 463–472. Zbl0405.26006MR0515347
- Császár Á., Laczkovich M., 10.1007/BF01903381, Acta. Math. Acad. Sci. Hungar. 33 (1979), 51–70. Zbl0401.54010MR0515120DOI10.1007/BF01903381
- Chandra D., Das P., Some further investigations of open covers and selection principles using ideals, Topology Proc. 39 (2012), 281–291. MR2869444
- Das P., Ghosal S.K., 10.1016/j.camwa.2010.01.027, Comput. Math. Appl. 59 (2010), no. 8, 2597–2600. MR2607963DOI10.1016/j.camwa.2010.01.027
- Das P., Ghosal S.K., 10.1016/j.topol.2010.02.003, Topology Appl. 157 (2010), no. 7, 1152–1156. MR2607080DOI10.1016/j.topol.2010.02.003
- Das P., Ghosal S.K., 10.1016/j.topol.2011.05.006, Topology Appl. 158 (2011), no. 13, 1529–1533. MR2812462DOI10.1016/j.topol.2011.05.006
- Das P., 10.1016/j.topol.2012.04.007, Topology Appl. 159 (2012), 2621–2625. Zbl1250.40002MR2923430DOI10.1016/j.topol.2012.04.007
- Das P., Dutta S., On some types of convergence of sequences of functions in ideal context, Filomat 27 (2013), no. 1, 147–154.
- Das P., Certain types of covers and selection principles using ideals, Houston J. Math. 39 (2013), no. 2, 447–460.
- Denjoy A., Leçons sur le calcul des coefficients d’une série trigonométrique, partie, Paris, 1941.
- Di Maio G., Kočinac Lj.D.R., 10.1016/j.topol.2008.01.015, Topology Appl. 156 (2008), 28–45. Zbl1155.54004MR2463821DOI10.1016/j.topol.2008.01.015
- Fast H., Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244. Zbl0044.33605MR0048548
- Fridy J.A., On statistical convergence, Analysis 5 (1985), 301–313. Zbl0588.40001MR0816582
- Gerlits J., Nagy Z., Some properties of , I, Topology Appl. 14 (1984), 145–155. Zbl0503.54020MR0667661
- Jacobs K., Measure and Integral, Academic Press, New York-London, 1978. Zbl0446.28001MR0514702
- Kostyrko P., Šalát T., Wilczyński W., -convergence, Real Anal. Exchange 26 (2000/2001), no. 2, 669–685. MR1844385
- Komisarski A., 10.1016/j.jmaa.2007.09.016, J. Math. Anal. Appl. 340 (2008), 770–779. MR2390885DOI10.1016/j.jmaa.2007.09.016
- Lahiri B.K., Das P., and -convergence in topological spaces, Math. Bohemica 130 (2005), 153–160. MR2148648
- Lahiri B.K., Das P., and -convergence of nets, Real Anal. Exchange 33 (2008), no. 2, 431–442. MR2458259
- Mro.zek N., 10.1016/j.jmaa.2008.08.032, J. Math. Anal. Appl. 349 (2009), 452–458. MR2456202DOI10.1016/j.jmaa.2008.08.032
- Papanastassiou N., On a new type of convergence of sequences of functions, Atti Sem. Mat. Fis. Univ. Modena 50 (2002), no. 2, 493–506. Zbl1221.28012MR1958294
- Šalát T., On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139–150. Zbl0437.40003MR0587239
- Schoenberg I.J., 10.2307/2308747, Amer. Math. Monthly 66 (1959), 361–375. Zbl0089.04002MR0104946DOI10.2307/2308747
- Van Douven E.K., The integers and topology, Handbook of Set-theoritic Topology, K. Kunen and J.E. Vaughan (eds.), North-Holland, Amsterdam, 1984. MR0776622
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.