and -convergence in topological spaces
Benoy Kumar Lahiri; Pratulananda Das
Mathematica Bohemica (2005)
- Volume: 130, Issue: 2, page 153-160
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topLahiri, Benoy Kumar, and Das, Pratulananda. "$I$ and $I^*$-convergence in topological spaces." Mathematica Bohemica 130.2 (2005): 153-160. <http://eudml.org/doc/249587>.
@article{Lahiri2005,
abstract = {We extend the idea of $I$-convergence and $I^*$-convergence of sequences to a topological space and derive several basic properties of these concepts in the topological space.},
author = {Lahiri, Benoy Kumar, Das, Pratulananda},
journal = {Mathematica Bohemica},
keywords = {$I$-convergence; $I^*$-convergence; condition (AP); $I$-limit point; $I$-cluster point; condition (AP); -limit point; -cluster point},
language = {eng},
number = {2},
pages = {153-160},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$I$ and $I^*$-convergence in topological spaces},
url = {http://eudml.org/doc/249587},
volume = {130},
year = {2005},
}
TY - JOUR
AU - Lahiri, Benoy Kumar
AU - Das, Pratulananda
TI - $I$ and $I^*$-convergence in topological spaces
JO - Mathematica Bohemica
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 130
IS - 2
SP - 153
EP - 160
AB - We extend the idea of $I$-convergence and $I^*$-convergence of sequences to a topological space and derive several basic properties of these concepts in the topological space.
LA - eng
KW - $I$-convergence; $I^*$-convergence; condition (AP); $I$-limit point; $I$-cluster point; condition (AP); -limit point; -cluster point
UR - http://eudml.org/doc/249587
ER -
References
top- -convergence and -continuity of real functions, Faculty of Natural Sciences, Constantine the Philosoper University, Nitra, Acta Mathematica 5, 43–50.
- 10.1524/anly.1988.8.12.47, Analysis 8 (1988), 47–63. (1988) Zbl0653.40001MR0954458DOI10.1524/anly.1988.8.12.47
- -limit superior and limit inferior, Math. Commun. 6 (2001), 165–172. (2001) Zbl0992.40002MR1908336
- 10.4064/cm-2-3-4-241-244, Colloq. Math. 2 (1951), 241–244. (1951) Zbl0044.33605MR0048548DOI10.4064/cm-2-3-4-241-244
- Sequences, Springer, New York, 1993. (1993)
- 10.2307/44154069, Real Analysis Exch. 26 (2000/2001), 669–685. (2000/2001) MR1844385DOI10.2307/44154069
- -convergence and a termal -limit points, (to appear). (to appear)
- Topologie I, PWN, Warszawa, 1962. (1962)
- Further results on -limit superior and -limit inferior, Math. Commun. 8 (2003), 151–156. (2003) MR2026393
- Statistical convergence of subsequences of a given sequence, Math. Bohem. 126 (2001), 191–208. (2001) MR1826482
- An introduction to the theory of numbers, 4th ed., John Wiley, New York, 1980. (1980) MR0572268
- On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139–150. (1980) MR0587239
- A note on -convergence field, (to appear). (to appear) MR2203460
- 10.2307/2308747, Am. Math. Mon. 66 (1959), 361–375. (1959) MR0104946DOI10.2307/2308747
Citations in EuDML Documents
top- Carlo Bardaro, Antonio Boccuto, Xenofon Dimitriou, Ilaria Mantellini, Abstract Korovkin-type theorems in modular spaces and applications
- Pratulananda Das, Ekrem Savaş, On some consequences of a generalized continuity
- Antonio Boccuto, Xenofon Dimitriou, Nikolaos Papanastassiou, Ideal convergence and divergence of nets in -groups
- Pratulananda Das, Debraj Chandra, Spaces not distinguishing pointwise and -quasinormal convergence
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.