Some generalized comparison results in Finsler geometry and their applications

Yecheng Zhu; Wenming Hu

Archivum Mathematicum (2013)

  • Volume: 049, Issue: 1, page 65-78
  • ISSN: 0044-8753

Abstract

top
In this paper, we generalize the Hessian comparison theorems and Laplacian comparison theorems described in [16, 18], then give some applications under various curvature conditions.

How to cite

top

Zhu, Yecheng, and Hu, Wenming. "Some generalized comparison results in Finsler geometry and their applications." Archivum Mathematicum 049.1 (2013): 65-78. <http://eudml.org/doc/252512>.

@article{Zhu2013,
abstract = {In this paper, we generalize the Hessian comparison theorems and Laplacian comparison theorems described in [16, 18], then give some applications under various curvature conditions.},
author = {Zhu, Yecheng, Hu, Wenming},
journal = {Archivum Mathematicum},
keywords = {comparison theorem; Finsler geometry; distance function; first eigenvalue; comparison theorem; Finsler geometry; distance function; first eigenvalue},
language = {eng},
number = {1},
pages = {65-78},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Some generalized comparison results in Finsler geometry and their applications},
url = {http://eudml.org/doc/252512},
volume = {049},
year = {2013},
}

TY - JOUR
AU - Zhu, Yecheng
AU - Hu, Wenming
TI - Some generalized comparison results in Finsler geometry and their applications
JO - Archivum Mathematicum
PY - 2013
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 049
IS - 1
SP - 65
EP - 78
AB - In this paper, we generalize the Hessian comparison theorems and Laplacian comparison theorems described in [16, 18], then give some applications under various curvature conditions.
LA - eng
KW - comparison theorem; Finsler geometry; distance function; first eigenvalue; comparison theorem; Finsler geometry; distance function; first eigenvalue
UR - http://eudml.org/doc/252512
ER -

References

top
  1. Astola, L., Jalba, A., Balmashnova, E., Florack, L., 10.1007/s10851-011-0264-4, J. Math. Imaging Vision 41 (2011), 170–181. (2011) Zbl1255.68185MR2843892DOI10.1007/s10851-011-0264-4
  2. Bao, D., Chern, S. S., Shen, Z., An Introduction to Riemann–Finsler Geometry, Springer, New York, 2000. (2000) Zbl0954.53001MR1747675
  3. Beil, R. G., 10.1023/A:1025689902340, Found. Phys. 33 (2003), 1107–1127. (2003) MR2012259DOI10.1023/A:1025689902340
  4. Busemann, H., Intrinsic Area, Ann. Math. 48 (1947), 234–267. (1947) MR0020626
  5. Chen, Q., Xin, Y. L., 10.2307/2374707, Amer. J. Math. 114 (1992), 335–366. (1992) Zbl0776.53032MR1156569DOI10.2307/2374707
  6. Chen, X. Y., Shen, Z. M., A comparison theorem on the Ricci curvature in projective geometry, Ann. Glob. Anal. Geom. 23 (2003), 14–155. (2003) Zbl1043.53059MR1961373
  7. Chern, S. S., Local equivalence and Euclidean connections in Finsler space, Sci. Rep. Nat. Tsing Hua Univ. Ser. A 5 (1948), 95–121. (1948) MR0031812
  8. Kasue, A., On a lower bound for the first eigenvalue of the Laplace operator on a Riemannian manifold, Ann. Sci. Ecole. Norm. Sup. 17 (1984), 31–44. (1984) Zbl0553.53026MR0744066
  9. Kim, C. W., Min, K., Finsler metrics with positive constant flag curvature, Ann. Glob. Anal. Geom. 92 (2009), 70–79. (2009) Zbl1170.53055MR2471989
  10. Ohta, S., 10.1007/s00526-009-0227-4, Calc. Var. Partial Differential Equations 36 (2009), 211–249. (2009) Zbl1175.49044MR2546027DOI10.1007/s00526-009-0227-4
  11. Ohta, S., 10.1007/s00208-008-0286-4, Math. Ann. 343 (2009), 669–699. (2009) Zbl1160.53033MR2480707DOI10.1007/s00208-008-0286-4
  12. Renesse, M., 10.1023/B:POTA.0000025376.45065.80, Potential Anal. 21 (2004), 151–176. (2004) Zbl1058.60063MR2058031DOI10.1023/B:POTA.0000025376.45065.80
  13. Shen, Z., 10.1006/aima.1997.1630, Adv. Math. 128 (1997), 306–328. (1997) MR1454401DOI10.1006/aima.1997.1630
  14. Shen, Z., The Non-linear Laplacian Finsler Manifolds, The Theory of Finslerian Laplacians and Applications (Antonelli, P. L., Lackey, B. C., eds.), Kluwer Acad. Publ., Dordrecht, 1998, pp. 187–198. (1998) MR1677366
  15. Shen, Z., Lectures on Finsler Geometry, World Scientific, Singapare, 2001. (2001) Zbl0974.53002MR1845637
  16. Shen, Z., Curvature, distance and volume in Finsler geometry, IHES 311 (2003), 549–576. (2003) 
  17. Wu, B. Y., 10.1016/j.geomphys.2008.02.009, J. Geom. Phys. 58 (2008), 923–930. (2008) Zbl1142.53328MR2426249DOI10.1016/j.geomphys.2008.02.009
  18. Wu, B. Y., Xin, Y. L., Comparision theorem in Finsler geometry and their applications, Math. Ann. 337 (2007), 177–196. (2007) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.