On a lower bound for the first eigenvalue of the Laplace operator on a riemannian manifold

Atsushi Kasue

Annales scientifiques de l'École Normale Supérieure (1984)

  • Volume: 17, Issue: 1, page 31-44
  • ISSN: 0012-9593

How to cite

top

Kasue, Atsushi. "On a lower bound for the first eigenvalue of the Laplace operator on a riemannian manifold." Annales scientifiques de l'École Normale Supérieure 17.1 (1984): 31-44. <http://eudml.org/doc/82135>.

@article{Kasue1984,
author = {Kasue, Atsushi},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {eigenvalue estimates; Busemann functions; Ricci curvature; mean curvature; eigenvalue of the Laplacian; Jacobi differential equation},
language = {eng},
number = {1},
pages = {31-44},
publisher = {Elsevier},
title = {On a lower bound for the first eigenvalue of the Laplace operator on a riemannian manifold},
url = {http://eudml.org/doc/82135},
volume = {17},
year = {1984},
}

TY - JOUR
AU - Kasue, Atsushi
TI - On a lower bound for the first eigenvalue of the Laplace operator on a riemannian manifold
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1984
PB - Elsevier
VL - 17
IS - 1
SP - 31
EP - 44
LA - eng
KW - eigenvalue estimates; Busemann functions; Ricci curvature; mean curvature; eigenvalue of the Laplacian; Jacobi differential equation
UR - http://eudml.org/doc/82135
ER -

References

top
  1. [1] J. BARTA, Sur la vibration fondamentale d'une membrane (Comptes Rendus de l'Acad. des Sci., Paris, Vol. 204, 1937, pp. 472-473). Zbl63.0762.02JFM63.0762.02
  2. [2] P. BÉRARD et D. MEYER, Inégalités isopérimétriques et applications (Ann. scient. Éc. Norm. Sup., Paris, 4e série, t. 15, 1982, pp. 513-542). Zbl0527.35020MR84h:58147
  3. [3] R. L. BISHOP and B. O'NEILL, Manifolds of negative curvature (Trans. Amer. Math. Soc., Vol. 145, 1969, pp. 1-49). Zbl0191.52002MR40 #4891
  4. [4] J. CHEEGER and D. GROMOLL, The splitting theorem for manifolds of nonnegative curvature (J. Differential Geometry, Vol. 6, 1971, pp. 119-128). Zbl0223.53033MR46 #2597
  5. [5] R. COURANT and D. HILBERT, Methods of Mathematical Physics, Interscience Pub., Inc., New York, 1970. Zbl57.0245.01
  6. [6] P. EBERLEIN and B. O'NEILL, Visibility manifolds (Pacific J. Math., Vol. 46, 1973, pp. 45-109). Zbl0264.53026MR49 #1421
  7. [7] S. FRIEDLAND and W. K. HAYMAN, Eigenvalue inequalities for the Dirichlet problem on spheres and the growth of subharmonic functions (Comm. Math. Helvetici, Vol. 51, 1976, pp. 133-161). Zbl0339.31003MR54 #568
  8. [8] S. GALLOT, Minorations sur le λ1 des variétés riemanniennes, Séminaire Bourbaki 33e année, 1980-1981, n° 569. Zbl0493.53034
  9. [9] S. GALLOT, A Sobolev inequality and some geometric applications, preprint (séminaire Franco-Japonais de Kyoto). 
  10. [10] R. E. GREENE and H. WU, On the subharmonicity and plurisubharmonicity of geodesically convex function, (Indiana Univ., Math. J., Vol. 22, 1973, pp. 641-653). Zbl0235.53039MR54 #10672
  11. [11] R. E. GREENE and H. WU, D∞ approximations of convex, subharmonic and plurisubharmonic functions (Ann. scient. Éc. Norm. Sup., 4e série, t. 12. 1979, pp. 47-84). Zbl0415.31001MR80m:53055
  12. [12] M. GROMOV, Paul Levy's isoperimetric inequalities, Publications I.H.E.S., 1981. 
  13. [13] E. HEINTZE and H. KARCHER, A general comparison theorem with applications to volume estimates for submanifolds (Ann. scient. Éc. Norm. Sup., Paris, Vol. 11, 1978, pp. 451-470). Zbl0416.53027MR80i:53026
  14. [14] A. KASUE, On a Riemannian manifold with a pole (Osaka J. Math., Vol. 18, 1981, pp. 109-113). Zbl0477.53042MR83f:53030
  15. [15] A. KASUE, A Laplacian comparison theorem and function theoretic properties of a complete Riemannian manifold (Japan J. Math., Vol. 18, 1982, pp. 309-341). Zbl0518.53048MR85h:53031
  16. [16] A. KASUE, Ricci curvature, geodesics and some geometric properties of Riemannian manifolds with boundary (J. Math. Soc. Japan, Vol. 35, 1983, pp. 117-131). Zbl0494.53039MR84g:53068
  17. [17] M. G. KREIN, On certain problems of the maximum and minimum of characteristic values and on the Lyapunov zones of stability (A.M.S. Trans., Vol. 2, n° 1, 1955, pp. 163-187). Zbl0066.33404MR17,484e
  18. [18] A. LICHNEROWICZ, Géométrie des groupes de transformations, Dunod, 1958. Zbl0096.16001MR23 #A1329
  19. [19] P. LI and S. T. YAU, Estimates of eigenvalues of a compact Riemannian manifold (Proc. Symp. Pure Math. A.M.S., Vol. 36, 1980, pp. 205-239). Zbl0441.58014MR81i:58050
  20. [20] H. P. MCKEAN, An upper bound to the spectrum on a manifold of negative curvature (J. Differential Geometry, Vol. 4, 1970, pp. 359-366). Zbl0197.18003MR42 #1009
  21. [21] M. OBATA, Certain conditions for a Riemannian manifold to be isometric with a sphere (J. Math. Soc. Japan, Vol. 14, 1962, pp. 333-340). Zbl0115.39302MR25 #5479
  22. [22] W. A. POOR Jr., Some results on nonnegatively curved manifolds (J. Differential Geometry, Vol. 9, 1974, pp. 583-600). Zbl0292.53037MR51 #11351
  23. [23] R. C. REILLY, Applications of the Hessian operator in a Riemannian manifold, (Indiana Univ. Math. J., Vol. 26, 1977, pp. 459-472). Zbl0391.53019MR57 #13799
  24. [24] H. WU, An elementary method in the study of nonnegative curvature (Acta. Math., Vol. 142, 1979, pp. 57-78). Zbl0403.53022MR80c:53054

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.