From infinitesimal harmonic transformations to Ricci solitons
Sergey E. Stepanov; Irina I. Tsyganok; Josef Mikeš
Mathematica Bohemica (2013)
- Volume: 138, Issue: 1, page 25-36
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topStepanov, Sergey E., Tsyganok, Irina I., and Mikeš, Josef. "From infinitesimal harmonic transformations to Ricci solitons." Mathematica Bohemica 138.1 (2013): 25-36. <http://eudml.org/doc/252554>.
@article{Stepanov2013,
abstract = {The concept of the Ricci soliton was introduced by R. S. Hamilton. The Ricci soliton is defined by a vector field and it is a natural generalization of the Einstein metric. We have shown earlier that the vector field of the Ricci soliton is an infinitesimal harmonic transformation. In our paper, we survey Ricci solitons geometry as an application of the theory of infinitesimal harmonic transformations.},
author = {Stepanov, Sergey E., Tsyganok, Irina I., Mikeš, Josef},
journal = {Mathematica Bohemica},
keywords = {Ricci soliton; infinitesimal harmonic transformation; Riemannian manifold; Ricci soliton; infinitesimal harmonic transformation; Riemannian manifold},
language = {eng},
number = {1},
pages = {25-36},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {From infinitesimal harmonic transformations to Ricci solitons},
url = {http://eudml.org/doc/252554},
volume = {138},
year = {2013},
}
TY - JOUR
AU - Stepanov, Sergey E.
AU - Tsyganok, Irina I.
AU - Mikeš, Josef
TI - From infinitesimal harmonic transformations to Ricci solitons
JO - Mathematica Bohemica
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 138
IS - 1
SP - 25
EP - 36
AB - The concept of the Ricci soliton was introduced by R. S. Hamilton. The Ricci soliton is defined by a vector field and it is a natural generalization of the Einstein metric. We have shown earlier that the vector field of the Ricci soliton is an infinitesimal harmonic transformation. In our paper, we survey Ricci solitons geometry as an application of the theory of infinitesimal harmonic transformations.
LA - eng
KW - Ricci soliton; infinitesimal harmonic transformation; Riemannian manifold; Ricci soliton; infinitesimal harmonic transformation; Riemannian manifold
UR - http://eudml.org/doc/252554
ER -
References
top- Bochner, S., 10.1090/S0002-9904-1946-08647-4, Bull. Amer. Math. Soc. 52 (1946), 776-797. (1946) Zbl0060.38301MR0018022DOI10.1090/S0002-9904-1946-08647-4
- Chow, B., Knopf, D., The Ricci Flow: an Introduction, Mathematical Surveys and Monographs 110, American Mathematical Society, Providence, RI (2004), 325. (2004) Zbl1086.53085MR2061425
- Chow, B., Lu, P., Ni, L., Hamilton's Ricci Flow, AMS Bookstore (2006), 608. (2006) Zbl1118.53001MR2274812
- Eells, J., Lemaire, L., 10.1112/blms/10.1.1, Bull. London Math. Soc. 10 (1978), 1-68. (1978) Zbl0401.58003MR0495450DOI10.1112/blms/10.1.1
- Ezin, J. P., Bourguignon, J. P., 10.1090/S0002-9947-1987-0882712-7, Trans. Amer. Math. Soc. 301 (1987), 723-736. (1987) Zbl0622.53023MR0882712DOI10.1090/S0002-9947-1987-0882712-7
- Eminent, M., Nave, G. La, Mantegazza, C., 10.1007/s00229-008-0210-y, Manuscript Math. 127 (2008), 345-367. (2008) MR2448435DOI10.1007/s00229-008-0210-y
- Gray, A., 10.4310/jdg/1214429504, J. Differ. Geom. 4 (1970), 283-309. (1970) Zbl0201.54401MR0267502DOI10.4310/jdg/1214429504
- Hamilton, R. S., 10.1090/conm/071/954419, Mathematics and general relativity (Proc. Conf. Santa Cruz/Calif., 1986), Contemp. Math. 71 (1988), 237-262. (1988) MR0954419DOI10.1090/conm/071/954419
- Hamilton, R. S., The formation of singularities in the Ricci flow, (Cambridge, MA, USA, 1993). Suppl. J. Differ. Geom. 2 (1995), 7-136. (1995) Zbl0867.53030MR1375255
- Hsiung, C., 10.1073/pnas.54.6.1509, Proc. Natl. Acad. Sci. USA 54 (1965), 1509-1513. (1965) Zbl0129.35802MR0188945DOI10.1073/pnas.54.6.1509
- Ivey, T., 10.1016/0926-2245(93)90008-O, Diff. Geom. Appl. 3 (1993), 301-307. (1993) Zbl0788.53034MR1249376DOI10.1016/0926-2245(93)90008-O
- Ishihara, S., Tashiro, Y., On Riemannian manifolds admitting a concircular transformation, Math. J. Okayama Univ. 9 (1959), 19-47. (1959) Zbl0093.35701MR0120588
- Kobayashi, K., Transformation Group in Differential Geometry, Springer, Berlin (1972), 182. (1972) MR0355886
- Lichnerowicz, A., Sur les tranformations conformes d'une variété riemannianne compacte, French C.R. Acad. Sci. Paris 259 (1964), 697-700. (1964) MR0166734
- Nouhaud, O., Transformations infinitesimales harmoniques, C. R. Acad., Paris, Ser. A 274 (1972), 573-576. (1972) Zbl0242.53013MR0290289
- Perelman, G., The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159v1 [math.DG] 11 Nov 2002 39. Zbl1130.53001
- Petersen, D., Riemannian Geometry. 2nd ed, Springer, New York (2006), 401. (2006) Zbl1220.53002MR2243772
- Smol'nikova, M. V., On global geometry of harmonic symmetric bilinear forms, Proc. Steklov Inst. Math. 236 (2002), 315-318. (2002) MR1931032
- Stepanov, S. E., Smol'nikova, M. V., Shandra, I. G., Infinitesimal harmonic maps, Russ. Math. 48 (2004), 65-70. (2004) Zbl1092.53027MR2101680
- Stepanov, S. E., Shandra, I. G., 10.1023/A:1024753028255, Ann. Global Anal. Geom. 24 (2003), 291-299. (2003) Zbl1035.53090MR1996772DOI10.1023/A:1024753028255
- Stepanov, S. E., Shelepova, V. N., 10.1134/S0001434609090193, Mathematical Notes 86 (2009), 447-450. (2009) MR2591387DOI10.1134/S0001434609090193
- Yano, K., The Theory of Lie Derivatives and Its Applications, Nord-Holland, Amsterdam (1957), 299. (1957) Zbl0077.15802MR0088769
- Yano, K., Integral Formulas in Riemannian Geometry, Marcel Dekker, New York (1970), 156. (1970) Zbl0213.23801MR0284950
- Yano, K., Nagano, T., 10.1007/BF02567005, Comment. Math. Helv. 35 (1961), 55-64. (1961) MR0124854DOI10.1007/BF02567005
- Yano, K., Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, Oxford (1965), 323. (1965) Zbl0127.12405MR0187181
- Yau, S.-T., 10.1512/iumj.1976.25.25051, Indiana Univ. Math. J. 25 (1976), 659-670. (1976) Zbl0335.53041MR0417452DOI10.1512/iumj.1976.25.25051
- Zhang, Z.-H., 10.2140/pjm.2009.242.189, Pac. J. Math. 242 (2009), 189-200. (2009) Zbl1171.53332MR2525510DOI10.2140/pjm.2009.242.189
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.