From infinitesimal harmonic transformations to Ricci solitons

Sergey E. Stepanov; Irina I. Tsyganok; Josef Mikeš

Mathematica Bohemica (2013)

  • Volume: 138, Issue: 1, page 25-36
  • ISSN: 0862-7959

Abstract

top
The concept of the Ricci soliton was introduced by R. S. Hamilton. The Ricci soliton is defined by a vector field and it is a natural generalization of the Einstein metric. We have shown earlier that the vector field of the Ricci soliton is an infinitesimal harmonic transformation. In our paper, we survey Ricci solitons geometry as an application of the theory of infinitesimal harmonic transformations.

How to cite

top

Stepanov, Sergey E., Tsyganok, Irina I., and Mikeš, Josef. "From infinitesimal harmonic transformations to Ricci solitons." Mathematica Bohemica 138.1 (2013): 25-36. <http://eudml.org/doc/252554>.

@article{Stepanov2013,
abstract = {The concept of the Ricci soliton was introduced by R. S. Hamilton. The Ricci soliton is defined by a vector field and it is a natural generalization of the Einstein metric. We have shown earlier that the vector field of the Ricci soliton is an infinitesimal harmonic transformation. In our paper, we survey Ricci solitons geometry as an application of the theory of infinitesimal harmonic transformations.},
author = {Stepanov, Sergey E., Tsyganok, Irina I., Mikeš, Josef},
journal = {Mathematica Bohemica},
keywords = {Ricci soliton; infinitesimal harmonic transformation; Riemannian manifold; Ricci soliton; infinitesimal harmonic transformation; Riemannian manifold},
language = {eng},
number = {1},
pages = {25-36},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {From infinitesimal harmonic transformations to Ricci solitons},
url = {http://eudml.org/doc/252554},
volume = {138},
year = {2013},
}

TY - JOUR
AU - Stepanov, Sergey E.
AU - Tsyganok, Irina I.
AU - Mikeš, Josef
TI - From infinitesimal harmonic transformations to Ricci solitons
JO - Mathematica Bohemica
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 138
IS - 1
SP - 25
EP - 36
AB - The concept of the Ricci soliton was introduced by R. S. Hamilton. The Ricci soliton is defined by a vector field and it is a natural generalization of the Einstein metric. We have shown earlier that the vector field of the Ricci soliton is an infinitesimal harmonic transformation. In our paper, we survey Ricci solitons geometry as an application of the theory of infinitesimal harmonic transformations.
LA - eng
KW - Ricci soliton; infinitesimal harmonic transformation; Riemannian manifold; Ricci soliton; infinitesimal harmonic transformation; Riemannian manifold
UR - http://eudml.org/doc/252554
ER -

References

top
  1. Bochner, S., 10.1090/S0002-9904-1946-08647-4, Bull. Amer. Math. Soc. 52 (1946), 776-797. (1946) Zbl0060.38301MR0018022DOI10.1090/S0002-9904-1946-08647-4
  2. Chow, B., Knopf, D., The Ricci Flow: an Introduction, Mathematical Surveys and Monographs 110, American Mathematical Society, Providence, RI (2004), 325. (2004) Zbl1086.53085MR2061425
  3. Chow, B., Lu, P., Ni, L., Hamilton's Ricci Flow, AMS Bookstore (2006), 608. (2006) Zbl1118.53001MR2274812
  4. Eells, J., Lemaire, L., 10.1112/blms/10.1.1, Bull. London Math. Soc. 10 (1978), 1-68. (1978) Zbl0401.58003MR0495450DOI10.1112/blms/10.1.1
  5. Ezin, J. P., Bourguignon, J. P., 10.1090/S0002-9947-1987-0882712-7, Trans. Amer. Math. Soc. 301 (1987), 723-736. (1987) Zbl0622.53023MR0882712DOI10.1090/S0002-9947-1987-0882712-7
  6. Eminent, M., Nave, G. La, Mantegazza, C., 10.1007/s00229-008-0210-y, Manuscript Math. 127 (2008), 345-367. (2008) MR2448435DOI10.1007/s00229-008-0210-y
  7. Gray, A., 10.4310/jdg/1214429504, J. Differ. Geom. 4 (1970), 283-309. (1970) Zbl0201.54401MR0267502DOI10.4310/jdg/1214429504
  8. Hamilton, R. S., 10.1090/conm/071/954419, Mathematics and general relativity (Proc. Conf. Santa Cruz/Calif., 1986), Contemp. Math. 71 (1988), 237-262. (1988) MR0954419DOI10.1090/conm/071/954419
  9. Hamilton, R. S., The formation of singularities in the Ricci flow, (Cambridge, MA, USA, 1993). Suppl. J. Differ. Geom. 2 (1995), 7-136. (1995) Zbl0867.53030MR1375255
  10. Hsiung, C., 10.1073/pnas.54.6.1509, Proc. Natl. Acad. Sci. USA 54 (1965), 1509-1513. (1965) Zbl0129.35802MR0188945DOI10.1073/pnas.54.6.1509
  11. Ivey, T., 10.1016/0926-2245(93)90008-O, Diff. Geom. Appl. 3 (1993), 301-307. (1993) Zbl0788.53034MR1249376DOI10.1016/0926-2245(93)90008-O
  12. Ishihara, S., Tashiro, Y., On Riemannian manifolds admitting a concircular transformation, Math. J. Okayama Univ. 9 (1959), 19-47. (1959) Zbl0093.35701MR0120588
  13. Kobayashi, K., Transformation Group in Differential Geometry, Springer, Berlin (1972), 182. (1972) MR0355886
  14. Lichnerowicz, A., Sur les tranformations conformes d'une variété riemannianne compacte, French C.R. Acad. Sci. Paris 259 (1964), 697-700. (1964) MR0166734
  15. Nouhaud, O., Transformations infinitesimales harmoniques, C. R. Acad., Paris, Ser. A 274 (1972), 573-576. (1972) Zbl0242.53013MR0290289
  16. Perelman, G., The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159v1 [math.DG] 11 Nov 2002 39. Zbl1130.53001
  17. Petersen, D., Riemannian Geometry. 2nd ed, Springer, New York (2006), 401. (2006) Zbl1220.53002MR2243772
  18. Smol'nikova, M. V., On global geometry of harmonic symmetric bilinear forms, Proc. Steklov Inst. Math. 236 (2002), 315-318. (2002) MR1931032
  19. Stepanov, S. E., Smol'nikova, M. V., Shandra, I. G., Infinitesimal harmonic maps, Russ. Math. 48 (2004), 65-70. (2004) Zbl1092.53027MR2101680
  20. Stepanov, S. E., Shandra, I. G., 10.1023/A:1024753028255, Ann. Global Anal. Geom. 24 (2003), 291-299. (2003) Zbl1035.53090MR1996772DOI10.1023/A:1024753028255
  21. Stepanov, S. E., Shelepova, V. N., 10.1134/S0001434609090193, Mathematical Notes 86 (2009), 447-450. (2009) MR2591387DOI10.1134/S0001434609090193
  22. Yano, K., The Theory of Lie Derivatives and Its Applications, Nord-Holland, Amsterdam (1957), 299. (1957) Zbl0077.15802MR0088769
  23. Yano, K., Integral Formulas in Riemannian Geometry, Marcel Dekker, New York (1970), 156. (1970) Zbl0213.23801MR0284950
  24. Yano, K., Nagano, T., 10.1007/BF02567005, Comment. Math. Helv. 35 (1961), 55-64. (1961) MR0124854DOI10.1007/BF02567005
  25. Yano, K., Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, Oxford (1965), 323. (1965) Zbl0127.12405MR0187181
  26. Yau, S.-T., 10.1512/iumj.1976.25.25051, Indiana Univ. Math. J. 25 (1976), 659-670. (1976) Zbl0335.53041MR0417452DOI10.1512/iumj.1976.25.25051
  27. Zhang, Z.-H., 10.2140/pjm.2009.242.189, Pac. J. Math. 242 (2009), 189-200. (2009) Zbl1171.53332MR2525510DOI10.2140/pjm.2009.242.189

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.