Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures

Amalendu Ghosh

Mathematica Bohemica (2016)

  • Volume: 141, Issue: 3, page 315-325
  • ISSN: 0862-7959

Abstract

top
We prove that a connected Riemannian manifold admitting a pair of non-trivial Einstein-Weyl structures ( g , ± ω ) with constant scalar curvature is either Einstein, or the dual field of ω is Killing. Next, let ( M n , g ) be a complete and connected Riemannian manifold of dimension at least 3 admitting a pair of Einstein-Weyl structures ( g , ± ω ) . Then the Einstein-Weyl vector field E (dual to the 1 -form ω ) generates an infinitesimal harmonic transformation if and only if E is Killing.

How to cite

top

Ghosh, Amalendu. "Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures." Mathematica Bohemica 141.3 (2016): 315-325. <http://eudml.org/doc/286809>.

@article{Ghosh2016,
abstract = {We prove that a connected Riemannian manifold admitting a pair of non-trivial Einstein-Weyl structures $(g, \pm \omega )$ with constant scalar curvature is either Einstein, or the dual field of $\omega $ is Killing. Next, let $(M^n, g)$ be a complete and connected Riemannian manifold of dimension at least $3$ admitting a pair of Einstein-Weyl structures $(g, \pm \omega )$. Then the Einstein-Weyl vector field $E$ (dual to the $1$-form $\omega $) generates an infinitesimal harmonic transformation if and only if $E$ is Killing.},
author = {Ghosh, Amalendu},
journal = {Mathematica Bohemica},
keywords = {Weyl manifold; Einstein-Weyl structure; infinitesimal harmonic transformation},
language = {eng},
number = {3},
pages = {315-325},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures},
url = {http://eudml.org/doc/286809},
volume = {141},
year = {2016},
}

TY - JOUR
AU - Ghosh, Amalendu
TI - Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures
JO - Mathematica Bohemica
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 141
IS - 3
SP - 315
EP - 325
AB - We prove that a connected Riemannian manifold admitting a pair of non-trivial Einstein-Weyl structures $(g, \pm \omega )$ with constant scalar curvature is either Einstein, or the dual field of $\omega $ is Killing. Next, let $(M^n, g)$ be a complete and connected Riemannian manifold of dimension at least $3$ admitting a pair of Einstein-Weyl structures $(g, \pm \omega )$. Then the Einstein-Weyl vector field $E$ (dual to the $1$-form $\omega $) generates an infinitesimal harmonic transformation if and only if $E$ is Killing.
LA - eng
KW - Weyl manifold; Einstein-Weyl structure; infinitesimal harmonic transformation
UR - http://eudml.org/doc/286809
ER -

References

top
  1. Besse, A. L., Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 10 Springer, Berlin (1987), German. (1987) Zbl0613.53001MR0867684
  2. Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics 203 Birkhäuser, Boston (2010). (2010) Zbl1246.53001MR2682326
  3. Boyer, C. P., Galicki, K., Sasakian Geometry, Oxford Mathematical Monographs Oxford University Press, Oxford (2008). (2008) Zbl1155.53002MR2382957
  4. Boyer, C. P., Galicki, K., Matzeu, P., 10.1007/s00220-005-1459-6, Comm. Math. Phys. 262 (2006), 177-208. (2006) Zbl1103.53022MR2200887DOI10.1007/s00220-005-1459-6
  5. Gauduchon, P., Weil-Einstein structures, twistor spaces and manifolds of type S 1 × S 3 , J. Reine Angew. Math. 469 (1995), 1-50 French. (1995) MR1363825
  6. Gauduchon, P., 10.1007/BF01455968, Math. Ann. 267 (1984), 495-518 French. (1984) Zbl0523.53059MR0742896DOI10.1007/BF01455968
  7. Ghosh, A., 10.1007/s00022-014-0240-4, J. Geom. 106 (2015), 137-152. (2015) Zbl1319.53091MR3320884DOI10.1007/s00022-014-0240-4
  8. Ghosh, A., 10.1007/s10455-008-9145-5, Ann. Global Anal. Geom. 35 (2009), 431-441. (2009) Zbl1180.53031MR2506245DOI10.1007/s10455-008-9145-5
  9. Higa, T., Weyl manifolds and Einstein-Weyl manifolds, Comment. Math. Univ. St. Pauli 42 (1993), 143-160. (1993) Zbl0811.53045MR1241295
  10. Ishihara, S., 10.2996/kmj/1138844260, Kōdai Math. Semin. Rep. 12 (1960), 45-56. (1960) Zbl0101.14203MR0121744DOI10.2996/kmj/1138844260
  11. Narita, F., 10.21099/tkbjm/1496163471, Tsukuba J. Math. 22 (1998), 87-98. (1998) Zbl0995.53035MR1637656DOI10.21099/tkbjm/1496163471
  12. Nouhaud, O., Déformations infinitésimales harmoniques remarquables, C. R. Acad. Sci. Paris Sér. A 275 (1972), 1103-1105 French. (1972) Zbl0243.53023MR0464090
  13. Okumura, M., 10.2748/tmj/1178244168, Tohoku Math. J. (2) 14 (1962), 135-145. (1962) Zbl0119.37701MR0143148DOI10.2748/tmj/1178244168
  14. Pedersen, H., Swann, A., Einstein-Weyl geometry, the Bach tensor and conformal scalar curvature, J. Reine Angew. Math. 441 (1993), 99-113. (1993) Zbl0776.53027MR1228613
  15. Pedersen, H., Swann, A., 10.1112/plms/s3-66.2.381, Proc. Lond. Math. Soc. (3) 66 (1993), 381-399. (1993) Zbl0742.53014MR1199072DOI10.1112/plms/s3-66.2.381
  16. Perrone, D., 10.1016/j.difgeo.2003.12.007, Differ. Geom. Appl. 20 (2004), 367-378. (2004) Zbl1061.53028MR2053920DOI10.1016/j.difgeo.2003.12.007
  17. Stepanov, S. E., Shandra, I. G., 10.1023/A:1024753028255, Ann. Global Anal. Geom. 24 (2003), 291-299. (2003) Zbl1035.53090MR1996772DOI10.1023/A:1024753028255
  18. Stepanov, S. E., Tsyganok, I. I., Mikeš, J., From infinitesimal harmonic transformations to Ricci solitons, Math. Bohem. 138 (2013), 25-36. (2013) Zbl1274.53096MR3076218
  19. Tanno, S., 10.1215/ijm/1256053971, Ill. J. Math. 12 (1968), 700-717. (1968) Zbl0165.24703MR0234486DOI10.1215/ijm/1256053971
  20. Tod, K. P., 10.1112/jlms/s2-45.2.341, J. Lond. Math. Soc. (2) 45 (1992), 341-351. (1992) Zbl0761.53026MR1171560DOI10.1112/jlms/s2-45.2.341
  21. Yano, K., Integral Formulas in Riemannian Geometry, Pure and Applied Mathematics, No. 1 Marcel Dekker, New York (1970). (1970) Zbl0213.23801MR0284950

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.