Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures
Mathematica Bohemica (2016)
- Volume: 141, Issue: 3, page 315-325
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topGhosh, Amalendu. "Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures." Mathematica Bohemica 141.3 (2016): 315-325. <http://eudml.org/doc/286809>.
@article{Ghosh2016,
abstract = {We prove that a connected Riemannian manifold admitting a pair of non-trivial Einstein-Weyl structures $(g, \pm \omega )$ with constant scalar curvature is either Einstein, or the dual field of $\omega $ is Killing. Next, let $(M^n, g)$ be a complete and connected Riemannian manifold of dimension at least $3$ admitting a pair of Einstein-Weyl structures $(g, \pm \omega )$. Then the Einstein-Weyl vector field $E$ (dual to the $1$-form $\omega $) generates an infinitesimal harmonic transformation if and only if $E$ is Killing.},
author = {Ghosh, Amalendu},
journal = {Mathematica Bohemica},
keywords = {Weyl manifold; Einstein-Weyl structure; infinitesimal harmonic transformation},
language = {eng},
number = {3},
pages = {315-325},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures},
url = {http://eudml.org/doc/286809},
volume = {141},
year = {2016},
}
TY - JOUR
AU - Ghosh, Amalendu
TI - Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures
JO - Mathematica Bohemica
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 141
IS - 3
SP - 315
EP - 325
AB - We prove that a connected Riemannian manifold admitting a pair of non-trivial Einstein-Weyl structures $(g, \pm \omega )$ with constant scalar curvature is either Einstein, or the dual field of $\omega $ is Killing. Next, let $(M^n, g)$ be a complete and connected Riemannian manifold of dimension at least $3$ admitting a pair of Einstein-Weyl structures $(g, \pm \omega )$. Then the Einstein-Weyl vector field $E$ (dual to the $1$-form $\omega $) generates an infinitesimal harmonic transformation if and only if $E$ is Killing.
LA - eng
KW - Weyl manifold; Einstein-Weyl structure; infinitesimal harmonic transformation
UR - http://eudml.org/doc/286809
ER -
References
top- Besse, A. L., Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 10 Springer, Berlin (1987), German. (1987) Zbl0613.53001MR0867684
- Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics 203 Birkhäuser, Boston (2010). (2010) Zbl1246.53001MR2682326
- Boyer, C. P., Galicki, K., Sasakian Geometry, Oxford Mathematical Monographs Oxford University Press, Oxford (2008). (2008) Zbl1155.53002MR2382957
- Boyer, C. P., Galicki, K., Matzeu, P., 10.1007/s00220-005-1459-6, Comm. Math. Phys. 262 (2006), 177-208. (2006) Zbl1103.53022MR2200887DOI10.1007/s00220-005-1459-6
- Gauduchon, P., Weil-Einstein structures, twistor spaces and manifolds of type , J. Reine Angew. Math. 469 (1995), 1-50 French. (1995) MR1363825
- Gauduchon, P., 10.1007/BF01455968, Math. Ann. 267 (1984), 495-518 French. (1984) Zbl0523.53059MR0742896DOI10.1007/BF01455968
- Ghosh, A., 10.1007/s00022-014-0240-4, J. Geom. 106 (2015), 137-152. (2015) Zbl1319.53091MR3320884DOI10.1007/s00022-014-0240-4
- Ghosh, A., 10.1007/s10455-008-9145-5, Ann. Global Anal. Geom. 35 (2009), 431-441. (2009) Zbl1180.53031MR2506245DOI10.1007/s10455-008-9145-5
- Higa, T., Weyl manifolds and Einstein-Weyl manifolds, Comment. Math. Univ. St. Pauli 42 (1993), 143-160. (1993) Zbl0811.53045MR1241295
- Ishihara, S., 10.2996/kmj/1138844260, Kōdai Math. Semin. Rep. 12 (1960), 45-56. (1960) Zbl0101.14203MR0121744DOI10.2996/kmj/1138844260
- Narita, F., 10.21099/tkbjm/1496163471, Tsukuba J. Math. 22 (1998), 87-98. (1998) Zbl0995.53035MR1637656DOI10.21099/tkbjm/1496163471
- Nouhaud, O., Déformations infinitésimales harmoniques remarquables, C. R. Acad. Sci. Paris Sér. A 275 (1972), 1103-1105 French. (1972) Zbl0243.53023MR0464090
- Okumura, M., 10.2748/tmj/1178244168, Tohoku Math. J. (2) 14 (1962), 135-145. (1962) Zbl0119.37701MR0143148DOI10.2748/tmj/1178244168
- Pedersen, H., Swann, A., Einstein-Weyl geometry, the Bach tensor and conformal scalar curvature, J. Reine Angew. Math. 441 (1993), 99-113. (1993) Zbl0776.53027MR1228613
- Pedersen, H., Swann, A., 10.1112/plms/s3-66.2.381, Proc. Lond. Math. Soc. (3) 66 (1993), 381-399. (1993) Zbl0742.53014MR1199072DOI10.1112/plms/s3-66.2.381
- Perrone, D., 10.1016/j.difgeo.2003.12.007, Differ. Geom. Appl. 20 (2004), 367-378. (2004) Zbl1061.53028MR2053920DOI10.1016/j.difgeo.2003.12.007
- Stepanov, S. E., Shandra, I. G., 10.1023/A:1024753028255, Ann. Global Anal. Geom. 24 (2003), 291-299. (2003) Zbl1035.53090MR1996772DOI10.1023/A:1024753028255
- Stepanov, S. E., Tsyganok, I. I., Mikeš, J., From infinitesimal harmonic transformations to Ricci solitons, Math. Bohem. 138 (2013), 25-36. (2013) Zbl1274.53096MR3076218
- Tanno, S., 10.1215/ijm/1256053971, Ill. J. Math. 12 (1968), 700-717. (1968) Zbl0165.24703MR0234486DOI10.1215/ijm/1256053971
- Tod, K. P., 10.1112/jlms/s2-45.2.341, J. Lond. Math. Soc. (2) 45 (1992), 341-351. (1992) Zbl0761.53026MR1171560DOI10.1112/jlms/s2-45.2.341
- Yano, K., Integral Formulas in Riemannian Geometry, Pure and Applied Mathematics, No. 1 Marcel Dekker, New York (1970). (1970) Zbl0213.23801MR0284950
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.