The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “From infinitesimal harmonic transformations to Ricci solitons”

On generalized M-projectively recurrent manifolds

Uday Chand De, Prajjwal Pal (2014)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

The purpose of the present paper is to study generalized M-projectively recurrent manifolds. Some geometric properties of generalized M projectively recurrent manifolds have been studied under certain curvature conditions. An application of such a manifold in the theory of relativity has also been shown. Finally, we give an example of a generalized M-projectively recurrent manifold.

On a generalized class of recurrent manifolds

Absos Ali Shaikh, Ananta Patra (2010)

Archivum Mathematicum

Similarity:

The object of the present paper is to introduce a non-flat Riemannian manifold called hyper-generalized recurrent manifolds and study its various geometric properties along with the existence of a proper example.

A curvature identity on a 6-dimensional Riemannian manifold and its applications

Yunhee Euh, Jeong Hyeong Park, Kouei Sekigawa (2017)

Czechoslovak Mathematical Journal

Similarity:

We derive a curvature identity that holds on any 6-dimensional Riemannian manifold, from the Chern-Gauss-Bonnet theorem for a 6-dimensional closed Riemannian manifold. Moreover, some applications of the curvature identity are given. We also define a generalization of harmonic manifolds to study the Lichnerowicz conjecture for a harmonic manifold “a harmonic manifold is locally symmetric” and provide another proof of the Lichnerowicz conjecture refined by Ledger for the 4-dimensional...

Some examples of harmonic maps for g -natural metrics

Mohamed Tahar Kadaoui Abbassi, Giovanni Calvaruso, Domenico Perrone (2009)

Annales mathématiques Blaise Pascal

Similarity:

We produce new examples of harmonic maps, having as source manifold a space ( M , g ) of constant curvature and as target manifold its tangent bundle T M , equipped with a suitable Riemannian g -natural metric. In particular, we determine a family of Riemannian g -natural metrics G on T 𝕊 2 , with respect to which all conformal gradient vector fields define harmonic maps from 𝕊 2 into ( T 𝕊 2 , G ) .