Nine-stage Multi-derivative Runge-Kutta method of order 12
Truong Nguyen-Ba; Vladan Božić; Emmanuel Kengne; Rémi Vaillancourt
Publications de l'Institut Mathématique (2009)
- Volume: 86(100), Issue: 106, page 75-96
- ISSN: 0350-1302
Access Full Article
topHow to cite
topTruong Nguyen-Ba, et al. "Nine-stage Multi-derivative Runge-Kutta method of order 12." Publications de l'Institut Mathématique 86(100).106 (2009): 75-96. <http://eudml.org/doc/256385>.
@article{TruongNguyen2009,
author = {Truong Nguyen-Ba, Vladan Božić, Emmanuel Kengne, Rémi Vaillancourt},
journal = {Publications de l'Institut Mathématique},
keywords = {general linear method for non-stiff ODE; Hermite-Birkhoff method; Taylor method; maximum global error; number of function evaluations; CPU time; stepsize control; stability; numerical results},
language = {eng},
number = {106},
pages = {75-96},
publisher = {Matematički institut SANU},
title = {Nine-stage Multi-derivative Runge-Kutta method of order 12},
url = {http://eudml.org/doc/256385},
volume = {86(100)},
year = {2009},
}
TY - JOUR
AU - Truong Nguyen-Ba
AU - Vladan Božić
AU - Emmanuel Kengne
AU - Rémi Vaillancourt
TI - Nine-stage Multi-derivative Runge-Kutta method of order 12
JO - Publications de l'Institut Mathématique
PY - 2009
PB - Matematički institut SANU
VL - 86(100)
IS - 106
SP - 75
EP - 96
LA - eng
KW - general linear method for non-stiff ODE; Hermite-Birkhoff method; Taylor method; maximum global error; number of function evaluations; CPU time; stepsize control; stability; numerical results
UR - http://eudml.org/doc/256385
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.