New existence results of anti-periodic solutions of nonlinear impulsive functional differential equations
Mathematica Bohemica (2013)
- Volume: 138, Issue: 4, page 337-360
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topLiu, Yuji, and Liu, Xingyuan. "New existence results of anti-periodic solutions of nonlinear impulsive functional differential equations." Mathematica Bohemica 138.4 (2013): 337-360. <http://eudml.org/doc/260610>.
@article{Liu2013,
abstract = {This paper is a continuation of Y. Liu, Anti-periodic solutions of nonlinear first order impulsive functional differential equations, Math. Slovaca 62 (2012), 695–720. By using Schaefer's fixed point theorem, new existence results on anti-periodic solutions of a class of nonlinear impulsive functional differential equations are established. The techniques to get the priori estimates of the possible solutions of the mentioned equations are different from those used in known papers. An example is given to illustrate the main theorems obtained. One sees easily that Example 3.1 can not be solved by Theorems 2.1–2.3 obtained in Liu's paper since (G2) in Theorem 2.1, (G4) in Theorem 2.2 and (G6) in Theorem 2.3 are not satisfied.},
author = {Liu, Yuji, Liu, Xingyuan},
journal = {Mathematica Bohemica},
keywords = {anti-periodic solution; impulsive functional differential equation; fixed-point theorem; growth condition; anti-periodic solution; impulsive functional differential equation; fixed-point theorem; growth condition},
language = {eng},
number = {4},
pages = {337-360},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {New existence results of anti-periodic solutions of nonlinear impulsive functional differential equations},
url = {http://eudml.org/doc/260610},
volume = {138},
year = {2013},
}
TY - JOUR
AU - Liu, Yuji
AU - Liu, Xingyuan
TI - New existence results of anti-periodic solutions of nonlinear impulsive functional differential equations
JO - Mathematica Bohemica
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 138
IS - 4
SP - 337
EP - 360
AB - This paper is a continuation of Y. Liu, Anti-periodic solutions of nonlinear first order impulsive functional differential equations, Math. Slovaca 62 (2012), 695–720. By using Schaefer's fixed point theorem, new existence results on anti-periodic solutions of a class of nonlinear impulsive functional differential equations are established. The techniques to get the priori estimates of the possible solutions of the mentioned equations are different from those used in known papers. An example is given to illustrate the main theorems obtained. One sees easily that Example 3.1 can not be solved by Theorems 2.1–2.3 obtained in Liu's paper since (G2) in Theorem 2.1, (G4) in Theorem 2.2 and (G6) in Theorem 2.3 are not satisfied.
LA - eng
KW - anti-periodic solution; impulsive functional differential equation; fixed-point theorem; growth condition; anti-periodic solution; impulsive functional differential equation; fixed-point theorem; growth condition
UR - http://eudml.org/doc/260610
ER -
References
top- Aftabizadeh, A. R., Aizicovici, S., Pavel, N. H., 10.1016/0022-247X(92)90345-E, J. Math. Anal. Appl. 171 (1992), 301-320. (1992) Zbl0767.34047MR1194081DOI10.1016/0022-247X(92)90345-E
- Aftabizadeh, A. R., Aizicovici, S., Pavel, N. H., 10.1016/0362-546X(92)90063-K, Nonlinear. Anal., Theory Methods Appl. 18 (1992), 253-267. (1992) Zbl0779.34054MR1148289DOI10.1016/0362-546X(92)90063-K
- Aftabizadeh, A. R., Huang, Y. K., Pavel, N. H., 10.1006/jmaa.1995.1171, J. Math. Anal. Appl. 192 (1995), 266-293. (1995) Zbl0831.34019MR1329424DOI10.1006/jmaa.1995.1171
- Aizicovici, S., McKibben, M., Reich, S., 10.1016/S0362-546X(99)00192-3, Nonlinear. Anal., Theory Methods Appl. 43 (2001), 233-251. (2001) Zbl0977.34061MR1790104DOI10.1016/S0362-546X(99)00192-3
- Aizicovici, S., Reich, S., Anti-periodic solutions to a class of non-monotone evolution equations, Discrete Contin. Dyn. Syst. 5 (1999), 35-42. (1999) Zbl0961.34044MR1664469
- Chen, Y., On Massera's theorem for anti-periodic solution, Adv. Math. Sci. Appl. 9 (1999), 125-128. (1999) Zbl0924.34037MR1690436
- Chen, Y., Nieto, J. J., O'Regan, D., 10.1016/j.mcm.2006.12.006, Math. Comput. Modelling 46 (2007), 1183-1190. (2007) Zbl1142.34313MR2376702DOI10.1016/j.mcm.2006.12.006
- Chen, Y., Wang, X., Xu, H., 10.1016/S0022-247X(02)00288-3, J. Math. Anal. Appl. 273 (2002), 627-636. (2002) Zbl1055.34113MR1932511DOI10.1016/S0022-247X(02)00288-3
- Cheng, S., Zhang, G., Existence of positive periodic solutions for non-autonomous functional differential equations, Electron. J. Differ. Equ. (electronic only) 2001 (2001), paper no. 59, 8 pages. (2001) Zbl1003.34059MR1863778
- Ding, W., Xing, Y., Han, M., 10.1016/j.amc.2006.07.087, Appl. Math. Comput. 186 (2007), 45-53. (2007) Zbl1124.34039MR2316490DOI10.1016/j.amc.2006.07.087
- Fan, Q., Wang, W., Yi, X., 10.1016/j.cam.2009.01.005, J. Comput. Appl. Math. 230 (2009), 762-769. (2009) Zbl1182.34088MR2536005DOI10.1016/j.cam.2009.01.005
- Franco, D., Nieto, J., 10.1016/S0362-546X(98)00337-X, Nonlinear Anal., Theory Methods Appl. 42 (2000), 163-173. (2000) Zbl0966.34025MR1773975DOI10.1016/S0362-546X(98)00337-X
- Franco, D., Nieto, J., 10.1016/S0377-0427(97)00212-4, J. Comput. Appl. Math. 88 (1998), 149-159. (1998) Zbl0898.34010MR1609074DOI10.1016/S0377-0427(97)00212-4
- Franco, D., Nieto, J., O'Regan, D., Anti-periodic boundary value problem for nonlinear first order ordinary differential equations, Math. Inequal. Appl. 6 (2003), 477-485. (2003) Zbl1097.34015MR1992487
- Gaines, R., Mawhin, J., 10.1007/BFb0089537, Lecture Notes in Mathematics 568 Springer, Berlin (1977). (1977) Zbl0339.47031MR0637067DOI10.1007/BFb0089537
- Lakshmikantham, V. V., Bajnov, D. D., Simeonov, P. S., Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics 6 World Scientific Publishing, Singapore (1989). (1989) Zbl0719.34002MR1082551
- Liu, Y., Anti-periodic boundary value problems for nonlinear impulsive functional differential equations, Fasc. Math. 39 (2008), 27-45. (2008) Zbl1163.34052MR2435788
- Liu, Y., 10.2478/s12175-012-0039-4, Math. Slovaca 62 (2012), 695-720. (2012) Zbl1274.34229MR2947975DOI10.2478/s12175-012-0039-4
- Liu, Y., 10.1017/S1446181108000230, ANZIAM J. 50 (2009), 513-533. (2009) Zbl1193.34167MR2571296DOI10.1017/S1446181108000230
- Liu, Y., 10.1007/s10492-009-0032-6, Appl. Math., Praha 54 (2009), 527-549. (2009) Zbl1212.34184MR2563123DOI10.1007/s10492-009-0032-6
- Luo, Z., Shen, J., Nieto, J., 10.1016/j.camwa.2004.08.010, Comput. Math. Appl. 49 (2005), 253-261. (2005) Zbl1084.34018MR2123404DOI10.1016/j.camwa.2004.08.010
- Mawhin, J., Topological Degree Methods in Nonlinear Boundary Value Problems, Regional Conference Series in Mathematics 40 AMS, Providence, R.I. (1979). (1979) Zbl0414.34025MR0525202
- Okochi, H., 10.2969/jmsj/04030541, J. Math. Soc. Japan 40 (1988), 541-553. (1988) Zbl0679.35046MR0945351DOI10.2969/jmsj/04030541
- Wang, K., 10.1016/j.aml.2007.12.013, Appl. Math. Lett. 21 (2008), 1149-1154. (2008) Zbl1168.34315MR2459839DOI10.1016/j.aml.2007.12.013
- Wang, K., Li, Y., 10.1016/j.na.2008.02.054, Nonlinear Anal., Theory Methods Appl. 70 (2009), 1711-1724. (2009) Zbl1167.34012MR2483592DOI10.1016/j.na.2008.02.054
- Wang, W., Shen, J., 10.1016/j.na.2007.12.031, Nonlinear Anal., Theory Methods Appl. 70 (2009), 598-605. (2009) Zbl1165.34007MR2468405DOI10.1016/j.na.2007.12.031
- Yin, Y., Monotone iterative technique and quasilinearization for some anti-periodic problems, Nonlinear World 3 (1996), 253-266. (1996) Zbl1013.34015MR1390017
- Yin, Y., Remarks on first order differential equations with anti-periodic boundary conditions, Nonlinear Times Dig. 2 (1995), 83-94. (1995) Zbl0832.34018MR1333336
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.