New existence results of anti-periodic solutions of nonlinear impulsive functional differential equations

Yuji Liu; Xingyuan Liu

Mathematica Bohemica (2013)

  • Volume: 138, Issue: 4, page 337-360
  • ISSN: 0862-7959

Abstract

top
This paper is a continuation of Y. Liu, Anti-periodic solutions of nonlinear first order impulsive functional differential equations, Math. Slovaca 62 (2012), 695–720. By using Schaefer's fixed point theorem, new existence results on anti-periodic solutions of a class of nonlinear impulsive functional differential equations are established. The techniques to get the priori estimates of the possible solutions of the mentioned equations are different from those used in known papers. An example is given to illustrate the main theorems obtained. One sees easily that Example 3.1 can not be solved by Theorems 2.1–2.3 obtained in Liu's paper since (G2) in Theorem 2.1, (G4) in Theorem 2.2 and (G6) in Theorem 2.3 are not satisfied.

How to cite

top

Liu, Yuji, and Liu, Xingyuan. "New existence results of anti-periodic solutions of nonlinear impulsive functional differential equations." Mathematica Bohemica 138.4 (2013): 337-360. <http://eudml.org/doc/260610>.

@article{Liu2013,
abstract = {This paper is a continuation of Y. Liu, Anti-periodic solutions of nonlinear first order impulsive functional differential equations, Math. Slovaca 62 (2012), 695–720. By using Schaefer's fixed point theorem, new existence results on anti-periodic solutions of a class of nonlinear impulsive functional differential equations are established. The techniques to get the priori estimates of the possible solutions of the mentioned equations are different from those used in known papers. An example is given to illustrate the main theorems obtained. One sees easily that Example 3.1 can not be solved by Theorems 2.1–2.3 obtained in Liu's paper since (G2) in Theorem 2.1, (G4) in Theorem 2.2 and (G6) in Theorem 2.3 are not satisfied.},
author = {Liu, Yuji, Liu, Xingyuan},
journal = {Mathematica Bohemica},
keywords = {anti-periodic solution; impulsive functional differential equation; fixed-point theorem; growth condition; anti-periodic solution; impulsive functional differential equation; fixed-point theorem; growth condition},
language = {eng},
number = {4},
pages = {337-360},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {New existence results of anti-periodic solutions of nonlinear impulsive functional differential equations},
url = {http://eudml.org/doc/260610},
volume = {138},
year = {2013},
}

TY - JOUR
AU - Liu, Yuji
AU - Liu, Xingyuan
TI - New existence results of anti-periodic solutions of nonlinear impulsive functional differential equations
JO - Mathematica Bohemica
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 138
IS - 4
SP - 337
EP - 360
AB - This paper is a continuation of Y. Liu, Anti-periodic solutions of nonlinear first order impulsive functional differential equations, Math. Slovaca 62 (2012), 695–720. By using Schaefer's fixed point theorem, new existence results on anti-periodic solutions of a class of nonlinear impulsive functional differential equations are established. The techniques to get the priori estimates of the possible solutions of the mentioned equations are different from those used in known papers. An example is given to illustrate the main theorems obtained. One sees easily that Example 3.1 can not be solved by Theorems 2.1–2.3 obtained in Liu's paper since (G2) in Theorem 2.1, (G4) in Theorem 2.2 and (G6) in Theorem 2.3 are not satisfied.
LA - eng
KW - anti-periodic solution; impulsive functional differential equation; fixed-point theorem; growth condition; anti-periodic solution; impulsive functional differential equation; fixed-point theorem; growth condition
UR - http://eudml.org/doc/260610
ER -

References

top
  1. Aftabizadeh, A. R., Aizicovici, S., Pavel, N. H., 10.1016/0022-247X(92)90345-E, J. Math. Anal. Appl. 171 (1992), 301-320. (1992) Zbl0767.34047MR1194081DOI10.1016/0022-247X(92)90345-E
  2. Aftabizadeh, A. R., Aizicovici, S., Pavel, N. H., 10.1016/0362-546X(92)90063-K, Nonlinear. Anal., Theory Methods Appl. 18 (1992), 253-267. (1992) Zbl0779.34054MR1148289DOI10.1016/0362-546X(92)90063-K
  3. Aftabizadeh, A. R., Huang, Y. K., Pavel, N. H., 10.1006/jmaa.1995.1171, J. Math. Anal. Appl. 192 (1995), 266-293. (1995) Zbl0831.34019MR1329424DOI10.1006/jmaa.1995.1171
  4. Aizicovici, S., McKibben, M., Reich, S., 10.1016/S0362-546X(99)00192-3, Nonlinear. Anal., Theory Methods Appl. 43 (2001), 233-251. (2001) Zbl0977.34061MR1790104DOI10.1016/S0362-546X(99)00192-3
  5. Aizicovici, S., Reich, S., Anti-periodic solutions to a class of non-monotone evolution equations, Discrete Contin. Dyn. Syst. 5 (1999), 35-42. (1999) Zbl0961.34044MR1664469
  6. Chen, Y., On Massera's theorem for anti-periodic solution, Adv. Math. Sci. Appl. 9 (1999), 125-128. (1999) Zbl0924.34037MR1690436
  7. Chen, Y., Nieto, J. J., O'Regan, D., 10.1016/j.mcm.2006.12.006, Math. Comput. Modelling 46 (2007), 1183-1190. (2007) Zbl1142.34313MR2376702DOI10.1016/j.mcm.2006.12.006
  8. Chen, Y., Wang, X., Xu, H., 10.1016/S0022-247X(02)00288-3, J. Math. Anal. Appl. 273 (2002), 627-636. (2002) Zbl1055.34113MR1932511DOI10.1016/S0022-247X(02)00288-3
  9. Cheng, S., Zhang, G., Existence of positive periodic solutions for non-autonomous functional differential equations, Electron. J. Differ. Equ. (electronic only) 2001 (2001), paper no. 59, 8 pages. (2001) Zbl1003.34059MR1863778
  10. Ding, W., Xing, Y., Han, M., 10.1016/j.amc.2006.07.087, Appl. Math. Comput. 186 (2007), 45-53. (2007) Zbl1124.34039MR2316490DOI10.1016/j.amc.2006.07.087
  11. Fan, Q., Wang, W., Yi, X., 10.1016/j.cam.2009.01.005, J. Comput. Appl. Math. 230 (2009), 762-769. (2009) Zbl1182.34088MR2536005DOI10.1016/j.cam.2009.01.005
  12. Franco, D., Nieto, J., 10.1016/S0362-546X(98)00337-X, Nonlinear Anal., Theory Methods Appl. 42 (2000), 163-173. (2000) Zbl0966.34025MR1773975DOI10.1016/S0362-546X(98)00337-X
  13. Franco, D., Nieto, J., 10.1016/S0377-0427(97)00212-4, J. Comput. Appl. Math. 88 (1998), 149-159. (1998) Zbl0898.34010MR1609074DOI10.1016/S0377-0427(97)00212-4
  14. Franco, D., Nieto, J., O'Regan, D., Anti-periodic boundary value problem for nonlinear first order ordinary differential equations, Math. Inequal. Appl. 6 (2003), 477-485. (2003) Zbl1097.34015MR1992487
  15. Gaines, R., Mawhin, J., 10.1007/BFb0089537, Lecture Notes in Mathematics 568 Springer, Berlin (1977). (1977) Zbl0339.47031MR0637067DOI10.1007/BFb0089537
  16. Lakshmikantham, V. V., Bajnov, D. D., Simeonov, P. S., Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics 6 World Scientific Publishing, Singapore (1989). (1989) Zbl0719.34002MR1082551
  17. Liu, Y., Anti-periodic boundary value problems for nonlinear impulsive functional differential equations, Fasc. Math. 39 (2008), 27-45. (2008) Zbl1163.34052MR2435788
  18. Liu, Y., 10.2478/s12175-012-0039-4, Math. Slovaca 62 (2012), 695-720. (2012) Zbl1274.34229MR2947975DOI10.2478/s12175-012-0039-4
  19. Liu, Y., 10.1017/S1446181108000230, ANZIAM J. 50 (2009), 513-533. (2009) Zbl1193.34167MR2571296DOI10.1017/S1446181108000230
  20. Liu, Y., 10.1007/s10492-009-0032-6, Appl. Math., Praha 54 (2009), 527-549. (2009) Zbl1212.34184MR2563123DOI10.1007/s10492-009-0032-6
  21. Luo, Z., Shen, J., Nieto, J., 10.1016/j.camwa.2004.08.010, Comput. Math. Appl. 49 (2005), 253-261. (2005) Zbl1084.34018MR2123404DOI10.1016/j.camwa.2004.08.010
  22. Mawhin, J., Topological Degree Methods in Nonlinear Boundary Value Problems, Regional Conference Series in Mathematics 40 AMS, Providence, R.I. (1979). (1979) Zbl0414.34025MR0525202
  23. Okochi, H., 10.2969/jmsj/04030541, J. Math. Soc. Japan 40 (1988), 541-553. (1988) Zbl0679.35046MR0945351DOI10.2969/jmsj/04030541
  24. Wang, K., 10.1016/j.aml.2007.12.013, Appl. Math. Lett. 21 (2008), 1149-1154. (2008) Zbl1168.34315MR2459839DOI10.1016/j.aml.2007.12.013
  25. Wang, K., Li, Y., 10.1016/j.na.2008.02.054, Nonlinear Anal., Theory Methods Appl. 70 (2009), 1711-1724. (2009) Zbl1167.34012MR2483592DOI10.1016/j.na.2008.02.054
  26. Wang, W., Shen, J., 10.1016/j.na.2007.12.031, Nonlinear Anal., Theory Methods Appl. 70 (2009), 598-605. (2009) Zbl1165.34007MR2468405DOI10.1016/j.na.2007.12.031
  27. Yin, Y., Monotone iterative technique and quasilinearization for some anti-periodic problems, Nonlinear World 3 (1996), 253-266. (1996) Zbl1013.34015MR1390017
  28. Yin, Y., Remarks on first order differential equations with anti-periodic boundary conditions, Nonlinear Times Dig. 2 (1995), 83-94. (1995) Zbl0832.34018MR1333336

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.