Existence of solutions for nonlinear nonmonotone evolution equations in Banach spaces with anti-periodic boundary conditions

Sahbi Boussandel

Applications of Mathematics (2018)

  • Volume: 63, Issue: 5, page 523-539
  • ISSN: 0862-7940

Abstract

top
The paper is devoted to the study of the existence of solutions for nonlinear nonmonotone evolution equations in Banach spaces involving anti-periodic boundary conditions. Our approach in this study relies on the theory of monotone and maximal monotone operators combined with the Schaefer fixed-point theorem and the monotonicity method. We apply our abstract results in order to solve a diffusion equation of Kirchhoff type involving the Dirichlet p -Laplace operator.

How to cite

top

Boussandel, Sahbi. "Existence of solutions for nonlinear nonmonotone evolution equations in Banach spaces with anti-periodic boundary conditions." Applications of Mathematics 63.5 (2018): 523-539. <http://eudml.org/doc/294778>.

@article{Boussandel2018,
abstract = {The paper is devoted to the study of the existence of solutions for nonlinear nonmonotone evolution equations in Banach spaces involving anti-periodic boundary conditions. Our approach in this study relies on the theory of monotone and maximal monotone operators combined with the Schaefer fixed-point theorem and the monotonicity method. We apply our abstract results in order to solve a diffusion equation of Kirchhoff type involving the Dirichlet $p$-Laplace operator.},
author = {Boussandel, Sahbi},
journal = {Applications of Mathematics},
keywords = {existence of solutions; anti-periodic; monotone operator; maximal monotone operator; Schaefer fixed-point theorem; monotonicity method; diffusion equation},
language = {eng},
number = {5},
pages = {523-539},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of solutions for nonlinear nonmonotone evolution equations in Banach spaces with anti-periodic boundary conditions},
url = {http://eudml.org/doc/294778},
volume = {63},
year = {2018},
}

TY - JOUR
AU - Boussandel, Sahbi
TI - Existence of solutions for nonlinear nonmonotone evolution equations in Banach spaces with anti-periodic boundary conditions
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 5
SP - 523
EP - 539
AB - The paper is devoted to the study of the existence of solutions for nonlinear nonmonotone evolution equations in Banach spaces involving anti-periodic boundary conditions. Our approach in this study relies on the theory of monotone and maximal monotone operators combined with the Schaefer fixed-point theorem and the monotonicity method. We apply our abstract results in order to solve a diffusion equation of Kirchhoff type involving the Dirichlet $p$-Laplace operator.
LA - eng
KW - existence of solutions; anti-periodic; monotone operator; maximal monotone operator; Schaefer fixed-point theorem; monotonicity method; diffusion equation
UR - http://eudml.org/doc/294778
ER -

References

top
  1. Aftabizadeh, A. R., Aizicovici, S., Pavel, N. H., 10.1016/0022-247X(92)90345-E, J. Math. Anal. Appl. 171 (1992), 301-320. (1992) Zbl0767.34047MR1194081DOI10.1016/0022-247X(92)90345-E
  2. Aizicovici, S., McKibben, M., Reich, S., 10.1016/S0362-546X(99)00192-3, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 43 (2001), 233-251. (2001) Zbl0977.34061MR1790104DOI10.1016/S0362-546X(99)00192-3
  3. Aizicovici, S., Pavel, N. H., 10.1016/0022-1236(91)90046-8, J. Funct. Anal. 99 (1991), 387-408. (1991) Zbl0743.34067MR1121619DOI10.1016/0022-1236(91)90046-8
  4. Boussandel, S., 10.21136/AM.2018.0233-17, Appl. Math., Praha 63 (2018), 423-437. (2018) Zbl06945740MR3842961DOI10.21136/AM.2018.0233-17
  5. Browder, F. E., Petryshyn, W. V., 10.1090/S0002-9904-1966-11544-6, Bull. Am. Math. Soc. 72 (1966), 571-575. (1966) Zbl0138.08202MR0190745DOI10.1090/S0002-9904-1966-11544-6
  6. Chen, Y., 10.1016/j.jmaa.2005.08.001, J. Math. Anal. Appl. 315 (2006), 337-348. (2006) Zbl1100.34046MR2196551DOI10.1016/j.jmaa.2005.08.001
  7. Chen, Y., Cho, Y. J., Jung, J. S., 10.1016/j.mcm.2003.06.007, Math. Comput. Modelling 40 (2004), 1123-1130. (2004) Zbl1074.34058MR2113840DOI10.1016/j.mcm.2003.06.007
  8. Chen, Y., Nieto, J. J., O'Regan, D., 10.1016/j.mcm.2006.12.006, Math. Comput. Modelling 46 (2007), 1183-1190. (2007) Zbl1142.34313MR2376702DOI10.1016/j.mcm.2006.12.006
  9. Chen, Y., Nieto, J. J., O'Regan, D., 10.1016/j.aml.2010.10.010, Appl. Math. Lett. 24 (2011), 302-307. (2011) Zbl1215.34069MR2741034DOI10.1016/j.aml.2010.10.010
  10. Chen, Y., O'Regan, D., Agarwal, R. P., 10.1016/j.aml.2010.06.022, Appl. Math. Lett. 23 (2010), 1320-1325. (2010) Zbl1208.34098MR2718504DOI10.1016/j.aml.2010.06.022
  11. Chen, Y., O'Regan, D., Agarwal, R. P., 10.1007/s12190-010-0463-y, J. Appl. Math. Comput. 38 (2012), 63-70. (2012) Zbl1302.34097MR2886666DOI10.1007/s12190-010-0463-y
  12. Chen, Y., Wang, X., Xu, H., 10.1016/S0022-247X(02)00288-3, J. Math. Anal. Appl. 273 (2002), 627-636. (2002) Zbl1055.34113MR1932511DOI10.1016/S0022-247X(02)00288-3
  13. Drábek, P., Milota, J., 10.1007/978-3-0348-0387-8, Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser, Basel (2007). (2007) Zbl1176.35002MR2323436DOI10.1007/978-3-0348-0387-8
  14. Gajewski, H., Gröger, K., Zacharias, K., 10.1002/mana.19750672207, Mathematische Lehrbücher und Monographien, II. Abteilung, Mathematische Monographien 38, Akademie, Berlin German (1974). (1974) Zbl0289.47029MR0636412DOI10.1002/mana.19750672207
  15. Gilbarg, D., Trudinger, N. S., 10.1007/978-3-642-61798-0, Classics in Mathematic, Springer, Berlin (2001). (2001) Zbl1042.35002MR1814364DOI10.1007/978-3-642-61798-0
  16. Haraux, A., 10.1007/BF01171760, Manuscr. Math. 63 (1989), 479-505. (1989) Zbl0684.35010MR0991267DOI10.1007/BF01171760
  17. Liu, Y., Liu, X., New existence results of anti-periodic solutions of nonlinear impulsive functional differential equations, Math. Bohem. 138 (2013), 337-360. (2013) Zbl1289.34168MR3231091
  18. Nakao, M., 10.1006/jmaa.1996.0465, J. Math. Anal. Appl. 204 (1996), 754-764. (1996) Zbl0873.35051MR1422770DOI10.1006/jmaa.1996.0465
  19. Okochi, H., 10.2969/jmsj/04030541, J. Math. Soc. Japan 40 (1988), 541-553. (1988) Zbl0679.35046MR0945351DOI10.2969/jmsj/04030541
  20. Okochi, H., 10.1016/0022-1236(90)90143-9, J. Funct. Anal. 91 (1990), 246-258. (1990) Zbl0735.35071MR1058971DOI10.1016/0022-1236(90)90143-9
  21. Okochi, H., 10.1016/0362-546X(90)90105-P, Nonlinear Anal., Theory Methods Appl. 14 (1990), 771-783. (1990) Zbl0715.35091MR1049120DOI10.1016/0362-546X(90)90105-P
  22. Simon, J., 10.1007/BF01762360, Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65-96. (1987) Zbl0629.46031MR0916688DOI10.1007/BF01762360
  23. Souplet, P., An optimal uniqueness condition for the antiperiodic solutions of parabolic evolution equations, C. R. Acad. Sci., Paris, Sér. I 319 (1994), 1037-1041 French. (1994) Zbl0809.35036MR1305673
  24. Souplet, P., 10.1016/S0362-546X(97)00477-X, Nonlinear Anal., Theory Methods Appl. 32 (1998), 279-286. (1998) Zbl0892.35078MR1491628DOI10.1016/S0362-546X(97)00477-X
  25. Tian, Y., Henderson, J., 10.1002/mana.201200110, Math. Nachr. 286 (2013), 1537-1547. (2013) Zbl1283.34016MR3119700DOI10.1002/mana.201200110
  26. Wu, R., 10.1016/j.aml.2010.04.022, Appl. Math. Lett. 23 (2010), 984-987. (2010) Zbl1202.34081MR2659124DOI10.1016/j.aml.2010.04.022
  27. Wu, R., Cong, F., Li, Y., 10.1016/j.aml.2010.12.031, Appl. Math. Lett. 23 (2011), 860-863. (2011) Zbl1223.34064MR2776149DOI10.1016/j.aml.2010.12.031
  28. Zeidler, E., 10.1007/978-1-4612-0985-0, Springer, New York (1990). (1990) Zbl0684.47028MR1033497DOI10.1007/978-1-4612-0985-0
  29. Zhenhai, L., 10.1016/j.jfa.2009.11.018, J. Funct. Anal. 258 (2010), 2026-2033. (2010) Zbl1184.35184MR2578462DOI10.1016/j.jfa.2009.11.018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.