Regularity results for a class of obstacle problems in Heisenberg groups
Applications of Mathematics (2013)
- Volume: 58, Issue: 5, page 531-554
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBigolin, Francesco. "Regularity results for a class of obstacle problems in Heisenberg groups." Applications of Mathematics 58.5 (2013): 531-554. <http://eudml.org/doc/260646>.
@article{Bigolin2013,
abstract = {We study regularity results for solutions $u\in H W^\{1,p\}(\Omega )$ to the obstacle problem \[ \int \_\{\Omega \} \mathcal \{A\}(x, \nabla \_\{\mathbb \{H\}\} u)\nabla \_\{\mathbb \{H\}\}(v-u) \{\rm d\} x \ge 0 \quad \forall v\in \mathcal \{K\}\_\{\psi ,u\}(\Omega ) \]
such that $u\ge \psi $ a.e. in $\Omega $, where $\mathcal \{K\}_\{\psi ,u\}(\Omega )= \lbrace v\in HW^\{1,p\}(\Omega )\colon v-u\in HW_\{0\}^\{1,p\}(\Omega ) v\ge \psi \text\{\rm a.e. in\} \Omega \rbrace $, in Heisenberg groups $\mathbb \{H\}^n$. In particular, we obtain weak differentiability in the $T$-direction and horizontal estimates of Calderon-Zygmund type, i.e. \[ \begin\{aligned\}d T\psi \in HW^\{1,p\}\_\{\rm loc\}(\Omega )&\Rightarrow Tu\in L^p\_\{\rm loc\}(\Omega ), |\nabla \_\{\mathbb \{H\}\}\psi |^p\in L^\{q\}\_\{\rm loc\}(\Omega )&\Rightarrow |\nabla \_\{\mathbb \{H\}\} u|^p \in L^q\_\{\rm loc\}(\Omega ), \end\{aligned\}d \]
where $2<p<4$, $q>1$.},
author = {Bigolin, Francesco},
journal = {Applications of Mathematics},
keywords = {obstacle problem; weak solution; regularity; Heisenberg group; obstacle problem; weak solution; regularity; Heisenberg group},
language = {eng},
number = {5},
pages = {531-554},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Regularity results for a class of obstacle problems in Heisenberg groups},
url = {http://eudml.org/doc/260646},
volume = {58},
year = {2013},
}
TY - JOUR
AU - Bigolin, Francesco
TI - Regularity results for a class of obstacle problems in Heisenberg groups
JO - Applications of Mathematics
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 5
SP - 531
EP - 554
AB - We study regularity results for solutions $u\in H W^{1,p}(\Omega )$ to the obstacle problem \[ \int _{\Omega } \mathcal {A}(x, \nabla _{\mathbb {H}} u)\nabla _{\mathbb {H}}(v-u) {\rm d} x \ge 0 \quad \forall v\in \mathcal {K}_{\psi ,u}(\Omega ) \]
such that $u\ge \psi $ a.e. in $\Omega $, where $\mathcal {K}_{\psi ,u}(\Omega )= \lbrace v\in HW^{1,p}(\Omega )\colon v-u\in HW_{0}^{1,p}(\Omega ) v\ge \psi \text{\rm a.e. in} \Omega \rbrace $, in Heisenberg groups $\mathbb {H}^n$. In particular, we obtain weak differentiability in the $T$-direction and horizontal estimates of Calderon-Zygmund type, i.e. \[ \begin{aligned}d T\psi \in HW^{1,p}_{\rm loc}(\Omega )&\Rightarrow Tu\in L^p_{\rm loc}(\Omega ), |\nabla _{\mathbb {H}}\psi |^p\in L^{q}_{\rm loc}(\Omega )&\Rightarrow |\nabla _{\mathbb {H}} u|^p \in L^q_{\rm loc}(\Omega ), \end{aligned}d \]
where $2<p<4$, $q>1$.
LA - eng
KW - obstacle problem; weak solution; regularity; Heisenberg group; obstacle problem; weak solution; regularity; Heisenberg group
UR - http://eudml.org/doc/260646
ER -
References
top- Acerbi, E., Mingione, G., 10.1215/S0012-7094-07-13623-8, Duke Math. J. 136 (2007), 285-320. (2007) Zbl1113.35105MR2286632DOI10.1215/S0012-7094-07-13623-8
- Bögelein, V., Duzaar, F., Mingione, G., Degenerate problems with irregular obstacles, J. Reine Angew. Math. 650 (2011), 107-160. (2011) Zbl1218.35088MR2770559
- Caffarelli, L. A., 10.1007/BF02498216, J. Fourier Anal. Appl. 4 (1998), 383-402. (1998) Zbl0928.49030MR1658612DOI10.1007/BF02498216
- Caffarelli, L. A., 10.1007/BF02392236, Acta Math. 139 (1978), 155-184. (1978) Zbl0386.35046MR0454350DOI10.1007/BF02392236
- Capogna, L., 10.1002/(SICI)1097-0312(199709)50:9<867::AID-CPA3>3.0.CO;2-3, Commun. Pure Appl. Math. 50 (1997), 867-889. (1997) Zbl0886.22006MR1459590DOI10.1002/(SICI)1097-0312(199709)50:9<867::AID-CPA3>3.0.CO;2-3
- Capogna, L., Danielli, D., Garofalo, N., 10.1080/03605309308820992, Commun. Partial Differ. Equations 18 (1993), 1765-1794. (1993) Zbl0802.35024MR1239930DOI10.1080/03605309308820992
- Capogna, L., Danielli, D., Pauls, S. D., Tyson, J. T., An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem. Progress in Mathematics 259, Birkhäuser Basel (2007). (2007) MR2312336
- Choe, H. J., 10.1007/BF00376141, Arch. Ration. Mech. Anal. 114 (1991), 383-394. (1991) Zbl0733.35024MR1100802DOI10.1007/BF00376141
- Citti, G., Sarti, A., 10.1007/s10851-005-3630-2, J. Math. Imaging Vision 24 (2006), 307-326. (2006) MR2235475DOI10.1007/s10851-005-3630-2
- Cupini, G., Fusco, N., Petti, R., 10.1006/jmaa.1999.6410, J. Math. Anal. Appl. 235 (1999), 578-597. (1999) Zbl0949.49022MR1703712DOI10.1006/jmaa.1999.6410
- Danielli, D., 10.1512/iumj.1995.44.1988, Indiana Univ. Math. J. 44 (1995), 269-286. (1995) Zbl0828.35022MR1336442DOI10.1512/iumj.1995.44.1988
- Danielli, D., Garofalo, N., Petrosyan, A., 10.1016/j.aim.2006.08.008, Adv. Math. 211 (2007), 485-516. (2007) MR2323535DOI10.1016/j.aim.2006.08.008
- DiBenedetto, E., Manfredi, J., 10.2307/2375066, Am. J. Math. 115 (1993), 1107-1134. (1993) Zbl0805.35037MR1246185DOI10.2307/2375066
- Domokos, A., 10.1016/j.jde.2004.05.009, J. Differ. Equations 204 (2004), 439-470. (2004) Zbl1065.35103MR2085543DOI10.1016/j.jde.2004.05.009
- Domokos, A., 10.1016/j.na.2007.07.020, Nonlinear Anal., Theory Methods Appl. 69 (2008), 1744-1756. (2008) Zbl1165.35006MR2424544DOI10.1016/j.na.2007.07.020
- Domokos, A., Manfredi, J. J., 10.1090/S0002-9939-04-07819-0, Proc. Am. Math. Soc. 133 (2005), 1047-1056. (2005) Zbl1081.35015MR2117205DOI10.1090/S0002-9939-04-07819-0
- Domokos, A., Manfredi, J. J., -regularity for -harmonic functions in the Heisenberg group for near , The -harmonic Equation and Recent Advances in Analysis. Proceedings of the 3rd Prairie Analysis Seminar, Manhattan, KS, USA, October 17-18, 2003 Contemporary Mathematics 370 American Mathematical Society, Providence P. Poggi-Corradini (2005), 17-23. (2005) Zbl1073.22004MR2126699
- Eleuteri, M., 10.1007/s10492-007-0007-4, Appl. Math., Praha 52 (2007), 137-170. (2007) Zbl1164.49009MR2305870DOI10.1007/s10492-007-0007-4
- Eleuteri, M., Habermann, J., 10.1016/j.jmaa.2010.05.072, J. Math. Anal. Appl. 372 (2010), 140-161. (2010) Zbl1211.49046MR2672516DOI10.1016/j.jmaa.2010.05.072
- Fuchs, M., Mingione, G., 10.1007/s002291020227, Manuscr. Math. 102 (2000), 227-250. (2000) MR1771942DOI10.1007/s002291020227
- Goldstein, P., Zatorska-Goldstein, A., 10.1515/FORUM.2008.033, Forum Math. 20 (2008), 679-710. (2008) Zbl1160.35356MR2431500DOI10.1515/FORUM.2008.033
- Gromov, M., Carnot-Carathéodory spaces seen from within, Sub-Riemannian Geometry. Proceedings of the Satellite Meeting of the 1st European Congress of Mathematics `Journées Nonholonomes: Géométrie Sous-Riemannienne, Théorie du Contrôle, Robotique', Paris, France, June 30--July 1, 1992 A. Bellaï che et al. Progress in Mathematics 144 Birkhauser, Basel (1996), 79-323. (1996) Zbl0864.53025MR1421823
- Heinonen, J., Kilpeläinen, T., Martio, O., Nonlinear potential theory of degenerate elliptic equations. Unabridged republication of the 1993 original, Dover Publications Mineola (2006). (2006) Zbl1115.31001MR2305115
- Hörmander, L., 10.1007/BF02392081, Acta Math. 119 (1967), 147-171. (1967) Zbl0156.10701MR0222474DOI10.1007/BF02392081
- Iwaniec, T., 10.4064/sm-75-3-293-312, Stud. Math. 75 (1983), 293-312. (1983) MR0722254DOI10.4064/sm-75-3-293-312
- Lewy, H., 10.2307/1970121, Ann. Math. 66 (1957), 155-158. (1957) MR0088629DOI10.2307/1970121
- Lions, J. L., Stampacchia, G., 10.1002/cpa.3160200302, Commun. Pure Appl. Math. 20 (1967), 493-519. (1967) Zbl0152.34601MR0216344DOI10.1002/cpa.3160200302
- Manfredi, J. J., Mingione, G., 10.1007/s00208-007-0121-3, Math. Ann. 339 (2007), 485-544. (2007) Zbl1128.35034MR2336058DOI10.1007/s00208-007-0121-3
- Marchi, S., Regularity for the solutions of double obstacle problems involving nonlinear elliptic operators on the Heisenberg group, Matematiche 56 (2001), 109-127. (2001) Zbl1048.35024MR1997729
- Mingione, G., The Calderón-Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 6 (2007), 195-261. (2007) Zbl1178.35168MR2352517
- Mingione, G., 10.1016/j.crma.2007.02.005, C. R., Math., Acad. Sci. Paris 344 (2007), 437-442. (2007) Zbl1190.35088MR2320247DOI10.1016/j.crma.2007.02.005
- Mingione, G., Zatorska-Goldstein, A., Zhong, X., 10.1016/j.aim.2009.03.016, Adv. Math. 222 (2009), 62-129. (2009) Zbl1175.35033MR2531368DOI10.1016/j.aim.2009.03.016
- Mu, J., Ziemer, W. P., 10.1080/03605309108820780, Commun. Partial Differ. Equations 16 (1991), 821-843. (1991) Zbl0742.35010MR1113109DOI10.1080/03605309108820780
- Rodrigues, J.-F., Obstacle Problems in Mathematical Physics. North-Holland Mathematics Studies 134, North-Holland Amsterdam (1987). (1987) MR0880369
- Stampacchia, G., Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci., Paris 258 (1964), 4413-4416 French. (1964) Zbl0124.06401MR0166591
- Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. With the Assistance of Timothy S. Murphy. Princeton Mathematical Series 43, Princeton University Press Princeton (1993). (1993) MR1232192
- Sussmann, H. J., Geometry and optimal control, Mathematical Control Theory. With a Foreword by Sanjoy K. Mitter. Dedicated to Roger Ware Brockett on the occasion of his 60th birthday J. B. Baillieul et al. Springer (1998), 140-198. (1998) Zbl1067.49500MR1661472
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.