Regularity results for a class of obstacle problems in Heisenberg groups

Francesco Bigolin

Applications of Mathematics (2013)

  • Volume: 58, Issue: 5, page 531-554
  • ISSN: 0862-7940

Abstract

top
We study regularity results for solutions u H W 1 , p ( Ω ) to the obstacle problem Ω 𝒜 ( x , u ) ( v - u ) d x 0 v 𝒦 ψ , u ( Ω ) such that u ψ a.e. in Ω , where 𝒦 ψ , u ( Ω ) = { v H W 1 , p ( Ω ) : v - u H W 0 1 , p ( Ω ) v ψ a.e. in Ω } , in Heisenberg groups n . In particular, we obtain weak differentiability in the T -direction and horizontal estimates of Calderon-Zygmund type, i.e. d T ψ H W loc 1 , p ( Ω ) T u L loc p ( Ω ) , | ψ | p L loc q ( Ω ) | u | p L loc q ( Ω ) , d where 2 < p < 4 , q > 1 .

How to cite

top

Bigolin, Francesco. "Regularity results for a class of obstacle problems in Heisenberg groups." Applications of Mathematics 58.5 (2013): 531-554. <http://eudml.org/doc/260646>.

@article{Bigolin2013,
abstract = {We study regularity results for solutions $u\in H W^\{1,p\}(\Omega )$ to the obstacle problem \[ \int \_\{\Omega \} \mathcal \{A\}(x, \nabla \_\{\mathbb \{H\}\} u)\nabla \_\{\mathbb \{H\}\}(v-u) \{\rm d\} x \ge 0 \quad \forall v\in \mathcal \{K\}\_\{\psi ,u\}(\Omega ) \] such that $u\ge \psi $ a.e. in $\Omega $, where $\mathcal \{K\}_\{\psi ,u\}(\Omega )= \lbrace v\in HW^\{1,p\}(\Omega )\colon v-u\in HW_\{0\}^\{1,p\}(\Omega ) v\ge \psi \text\{\rm a.e. in\} \Omega \rbrace $, in Heisenberg groups $\mathbb \{H\}^n$. In particular, we obtain weak differentiability in the $T$-direction and horizontal estimates of Calderon-Zygmund type, i.e. \[ \begin\{aligned\}d T\psi \in HW^\{1,p\}\_\{\rm loc\}(\Omega )&\Rightarrow Tu\in L^p\_\{\rm loc\}(\Omega ), |\nabla \_\{\mathbb \{H\}\}\psi |^p\in L^\{q\}\_\{\rm loc\}(\Omega )&\Rightarrow |\nabla \_\{\mathbb \{H\}\} u|^p \in L^q\_\{\rm loc\}(\Omega ), \end\{aligned\}d \] where $2<p<4$, $q>1$.},
author = {Bigolin, Francesco},
journal = {Applications of Mathematics},
keywords = {obstacle problem; weak solution; regularity; Heisenberg group; obstacle problem; weak solution; regularity; Heisenberg group},
language = {eng},
number = {5},
pages = {531-554},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Regularity results for a class of obstacle problems in Heisenberg groups},
url = {http://eudml.org/doc/260646},
volume = {58},
year = {2013},
}

TY - JOUR
AU - Bigolin, Francesco
TI - Regularity results for a class of obstacle problems in Heisenberg groups
JO - Applications of Mathematics
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 5
SP - 531
EP - 554
AB - We study regularity results for solutions $u\in H W^{1,p}(\Omega )$ to the obstacle problem \[ \int _{\Omega } \mathcal {A}(x, \nabla _{\mathbb {H}} u)\nabla _{\mathbb {H}}(v-u) {\rm d} x \ge 0 \quad \forall v\in \mathcal {K}_{\psi ,u}(\Omega ) \] such that $u\ge \psi $ a.e. in $\Omega $, where $\mathcal {K}_{\psi ,u}(\Omega )= \lbrace v\in HW^{1,p}(\Omega )\colon v-u\in HW_{0}^{1,p}(\Omega ) v\ge \psi \text{\rm a.e. in} \Omega \rbrace $, in Heisenberg groups $\mathbb {H}^n$. In particular, we obtain weak differentiability in the $T$-direction and horizontal estimates of Calderon-Zygmund type, i.e. \[ \begin{aligned}d T\psi \in HW^{1,p}_{\rm loc}(\Omega )&\Rightarrow Tu\in L^p_{\rm loc}(\Omega ), |\nabla _{\mathbb {H}}\psi |^p\in L^{q}_{\rm loc}(\Omega )&\Rightarrow |\nabla _{\mathbb {H}} u|^p \in L^q_{\rm loc}(\Omega ), \end{aligned}d \] where $2<p<4$, $q>1$.
LA - eng
KW - obstacle problem; weak solution; regularity; Heisenberg group; obstacle problem; weak solution; regularity; Heisenberg group
UR - http://eudml.org/doc/260646
ER -

References

top
  1. Acerbi, E., Mingione, G., 10.1215/S0012-7094-07-13623-8, Duke Math. J. 136 (2007), 285-320. (2007) Zbl1113.35105MR2286632DOI10.1215/S0012-7094-07-13623-8
  2. Bögelein, V., Duzaar, F., Mingione, G., Degenerate problems with irregular obstacles, J. Reine Angew. Math. 650 (2011), 107-160. (2011) Zbl1218.35088MR2770559
  3. Caffarelli, L. A., 10.1007/BF02498216, J. Fourier Anal. Appl. 4 (1998), 383-402. (1998) Zbl0928.49030MR1658612DOI10.1007/BF02498216
  4. Caffarelli, L. A., 10.1007/BF02392236, Acta Math. 139 (1978), 155-184. (1978) Zbl0386.35046MR0454350DOI10.1007/BF02392236
  5. Capogna, L., 10.1002/(SICI)1097-0312(199709)50:9<867::AID-CPA3>3.0.CO;2-3, Commun. Pure Appl. Math. 50 (1997), 867-889. (1997) Zbl0886.22006MR1459590DOI10.1002/(SICI)1097-0312(199709)50:9<867::AID-CPA3>3.0.CO;2-3
  6. Capogna, L., Danielli, D., Garofalo, N., 10.1080/03605309308820992, Commun. Partial Differ. Equations 18 (1993), 1765-1794. (1993) Zbl0802.35024MR1239930DOI10.1080/03605309308820992
  7. Capogna, L., Danielli, D., Pauls, S. D., Tyson, J. T., An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem. Progress in Mathematics 259, Birkhäuser Basel (2007). (2007) MR2312336
  8. Choe, H. J., 10.1007/BF00376141, Arch. Ration. Mech. Anal. 114 (1991), 383-394. (1991) Zbl0733.35024MR1100802DOI10.1007/BF00376141
  9. Citti, G., Sarti, A., 10.1007/s10851-005-3630-2, J. Math. Imaging Vision 24 (2006), 307-326. (2006) MR2235475DOI10.1007/s10851-005-3630-2
  10. Cupini, G., Fusco, N., Petti, R., 10.1006/jmaa.1999.6410, J. Math. Anal. Appl. 235 (1999), 578-597. (1999) Zbl0949.49022MR1703712DOI10.1006/jmaa.1999.6410
  11. Danielli, D., 10.1512/iumj.1995.44.1988, Indiana Univ. Math. J. 44 (1995), 269-286. (1995) Zbl0828.35022MR1336442DOI10.1512/iumj.1995.44.1988
  12. Danielli, D., Garofalo, N., Petrosyan, A., 10.1016/j.aim.2006.08.008, Adv. Math. 211 (2007), 485-516. (2007) MR2323535DOI10.1016/j.aim.2006.08.008
  13. DiBenedetto, E., Manfredi, J., 10.2307/2375066, Am. J. Math. 115 (1993), 1107-1134. (1993) Zbl0805.35037MR1246185DOI10.2307/2375066
  14. Domokos, A., 10.1016/j.jde.2004.05.009, J. Differ. Equations 204 (2004), 439-470. (2004) Zbl1065.35103MR2085543DOI10.1016/j.jde.2004.05.009
  15. Domokos, A., 10.1016/j.na.2007.07.020, Nonlinear Anal., Theory Methods Appl. 69 (2008), 1744-1756. (2008) Zbl1165.35006MR2424544DOI10.1016/j.na.2007.07.020
  16. Domokos, A., Manfredi, J. J., 10.1090/S0002-9939-04-07819-0, Proc. Am. Math. Soc. 133 (2005), 1047-1056. (2005) Zbl1081.35015MR2117205DOI10.1090/S0002-9939-04-07819-0
  17. Domokos, A., Manfredi, J. J., C 1 , α -regularity for p -harmonic functions in the Heisenberg group for p near 2 , The -harmonic Equation and Recent Advances in Analysis. Proceedings of the 3rd Prairie Analysis Seminar, Manhattan, KS, USA, October 17-18, 2003 Contemporary Mathematics 370 American Mathematical Society, Providence P. Poggi-Corradini (2005), 17-23. (2005) Zbl1073.22004MR2126699
  18. Eleuteri, M., 10.1007/s10492-007-0007-4, Appl. Math., Praha 52 (2007), 137-170. (2007) Zbl1164.49009MR2305870DOI10.1007/s10492-007-0007-4
  19. Eleuteri, M., Habermann, J., 10.1016/j.jmaa.2010.05.072, J. Math. Anal. Appl. 372 (2010), 140-161. (2010) Zbl1211.49046MR2672516DOI10.1016/j.jmaa.2010.05.072
  20. Fuchs, M., Mingione, G., 10.1007/s002291020227, Manuscr. Math. 102 (2000), 227-250. (2000) MR1771942DOI10.1007/s002291020227
  21. Goldstein, P., Zatorska-Goldstein, A., 10.1515/FORUM.2008.033, Forum Math. 20 (2008), 679-710. (2008) Zbl1160.35356MR2431500DOI10.1515/FORUM.2008.033
  22. Gromov, M., Carnot-Carathéodory spaces seen from within, Sub-Riemannian Geometry. Proceedings of the Satellite Meeting of the 1st European Congress of Mathematics `Journées Nonholonomes: Géométrie Sous-Riemannienne, Théorie du Contrôle, Robotique', Paris, France, June 30--July 1, 1992 A. Bellaï che et al. Progress in Mathematics 144 Birkhauser, Basel (1996), 79-323. (1996) Zbl0864.53025MR1421823
  23. Heinonen, J., Kilpeläinen, T., Martio, O., Nonlinear potential theory of degenerate elliptic equations. Unabridged republication of the 1993 original, Dover Publications Mineola (2006). (2006) Zbl1115.31001MR2305115
  24. Hörmander, L., 10.1007/BF02392081, Acta Math. 119 (1967), 147-171. (1967) Zbl0156.10701MR0222474DOI10.1007/BF02392081
  25. Iwaniec, T., 10.4064/sm-75-3-293-312, Stud. Math. 75 (1983), 293-312. (1983) MR0722254DOI10.4064/sm-75-3-293-312
  26. Lewy, H., 10.2307/1970121, Ann. Math. 66 (1957), 155-158. (1957) MR0088629DOI10.2307/1970121
  27. Lions, J. L., Stampacchia, G., 10.1002/cpa.3160200302, Commun. Pure Appl. Math. 20 (1967), 493-519. (1967) Zbl0152.34601MR0216344DOI10.1002/cpa.3160200302
  28. Manfredi, J. J., Mingione, G., 10.1007/s00208-007-0121-3, Math. Ann. 339 (2007), 485-544. (2007) Zbl1128.35034MR2336058DOI10.1007/s00208-007-0121-3
  29. Marchi, S., Regularity for the solutions of double obstacle problems involving nonlinear elliptic operators on the Heisenberg group, Matematiche 56 (2001), 109-127. (2001) Zbl1048.35024MR1997729
  30. Mingione, G., The Calderón-Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 6 (2007), 195-261. (2007) Zbl1178.35168MR2352517
  31. Mingione, G., 10.1016/j.crma.2007.02.005, C. R., Math., Acad. Sci. Paris 344 (2007), 437-442. (2007) Zbl1190.35088MR2320247DOI10.1016/j.crma.2007.02.005
  32. Mingione, G., Zatorska-Goldstein, A., Zhong, X., 10.1016/j.aim.2009.03.016, Adv. Math. 222 (2009), 62-129. (2009) Zbl1175.35033MR2531368DOI10.1016/j.aim.2009.03.016
  33. Mu, J., Ziemer, W. P., 10.1080/03605309108820780, Commun. Partial Differ. Equations 16 (1991), 821-843. (1991) Zbl0742.35010MR1113109DOI10.1080/03605309108820780
  34. Rodrigues, J.-F., Obstacle Problems in Mathematical Physics. North-Holland Mathematics Studies 134, North-Holland Amsterdam (1987). (1987) MR0880369
  35. Stampacchia, G., Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci., Paris 258 (1964), 4413-4416 French. (1964) Zbl0124.06401MR0166591
  36. Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. With the Assistance of Timothy S. Murphy. Princeton Mathematical Series 43, Princeton University Press Princeton (1993). (1993) MR1232192
  37. Sussmann, H. J., Geometry and optimal control, Mathematical Control Theory. With a Foreword by Sanjoy K. Mitter. Dedicated to Roger Ware Brockett on the occasion of his 60th birthday J. B. Baillieul et al. Springer (1998), 140-198. (1998) Zbl1067.49500MR1661472

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.