Regularity results for a class of obstacle problems
Applications of Mathematics (2007)
- Volume: 52, Issue: 2, page 137-170
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topEleuteri, Michela. "Regularity results for a class of obstacle problems." Applications of Mathematics 52.2 (2007): 137-170. <http://eudml.org/doc/33281>.
@article{Eleuteri2007,
abstract = {We prove some optimal regularity results for minimizers of the integral functional $\int f(x,u,Du)\mathrm \{d\}x$ belonging to the class $ K:=\lbrace u \in W^\{1,p\}(\Omega )\: u\ge \psi \rbrace $, where $\psi $ is a fixed function, under standard growth conditions of $p$-type, i.e. \[ L^\{-1\}|z|^p \le f(x,s,z) \le L(1+|z|^p). \]},
author = {Eleuteri, Michela},
journal = {Applications of Mathematics},
keywords = {regularity results; local minimizers; integral functionals; obstacle problems; standard growth conditions; regularity results; local minimizers; integral functionals; obstacle problems; standard growth conditions},
language = {eng},
number = {2},
pages = {137-170},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Regularity results for a class of obstacle problems},
url = {http://eudml.org/doc/33281},
volume = {52},
year = {2007},
}
TY - JOUR
AU - Eleuteri, Michela
TI - Regularity results for a class of obstacle problems
JO - Applications of Mathematics
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 2
SP - 137
EP - 170
AB - We prove some optimal regularity results for minimizers of the integral functional $\int f(x,u,Du)\mathrm {d}x$ belonging to the class $ K:=\lbrace u \in W^{1,p}(\Omega )\: u\ge \psi \rbrace $, where $\psi $ is a fixed function, under standard growth conditions of $p$-type, i.e. \[ L^{-1}|z|^p \le f(x,s,z) \le L(1+|z|^p). \]
LA - eng
KW - regularity results; local minimizers; integral functionals; obstacle problems; standard growth conditions; regularity results; local minimizers; integral functionals; obstacle problems; standard growth conditions
UR - http://eudml.org/doc/33281
ER -
References
top- 10.1007/s002050100117, Arch. Ration. Mech. Anal. 156 (2001), 121–140. (2001) MR1814973DOI10.1007/s002050100117
- 10.1007/BF00376141, Arch. Ration. Mech. Anal. 114 (1991), 383–394. (1991) Zbl0733.35024MR1100802DOI10.1007/BF00376141
- 10.1016/S0764-4442(99)80226-2, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 363–368. (1999) MR1675954DOI10.1016/S0764-4442(99)80226-2
- 10.1006/jmaa.1999.6410, J. Math. Anal. Appl. 235 (1999), 578–597. (1999) MR1703712DOI10.1006/jmaa.1999.6410
- Hölder continuity for local minimizers of a nonconvex variational problem, J. Convex Anal. 10 (2003), 389–408. (2003) MR2043864
- Morrey spaces and local regularity of minimizers of variational integrals, Rend. Mat. Appl., VII. Ser. 21 (2001), 121–141. (2001) MR1884939
- 10.1090/S0273-0979-1979-14595-6, Bull. Am. Math. Soc. 3 (1979), 443–474. (1979) Zbl0441.49011MR0526967DOI10.1090/S0273-0979-1979-14595-6
- Hölder continuity results for a class of functionals with non standard growth, Boll. Unione Mat. Ital. 8, 7-B (2004), 129–157. (2004) Zbl1178.49045MR2044264
- 10.1515/form.2002.011, Forum Math. 14 (2002), 245–272. (2002) MR1880913DOI10.1515/form.2002.011
- 10.1006/jmaa.1996.0301, J. Math. Anal. Appl. 202 (1996), 27–52. (1996) MR1402586DOI10.1006/jmaa.1996.0301
- Regularity results for anisotropic image segmentation models, Ann. Sc. Norm. Super. Pisa 24 (1997), 463–499. (1997) MR1612389
- 10.1051/cocv:2002004, ESAIM, Control Optim. Calc. Var. 7 (2002), 69–95. (2002) MR1925022DOI10.1051/cocv:2002004
- 10.1007/BF01171703, Manuscr. Math. 54 (1985), 121–143. (1985) MR0808684DOI10.1007/BF01171703
- 10.1016/S0294-1449(16)30429-2, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1 (1984), 79–107. (1984) MR0778969DOI10.1016/S0294-1449(16)30429-2
- Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1977. (1977) MR0473443
- Direct Methods in the Calculus of Variations, World Scientific, Singapore, 2003. (2003) Zbl1028.49001MR1962933
- 10.1016/0022-0396(88)90070-8, J. Differ. Equations 76 (1988), 203–212. (1988) Zbl0674.35008MR0969420DOI10.1016/0022-0396(88)90070-8
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.