Regularity results for a class of obstacle problems

Michela Eleuteri

Applications of Mathematics (2007)

  • Volume: 52, Issue: 2, page 137-170
  • ISSN: 0862-7940

Abstract

top
We prove some optimal regularity results for minimizers of the integral functional f ( x , u , D u ) d x belonging to the class K : = { u W 1 , p ( Ω ) u ψ } , where ψ is a fixed function, under standard growth conditions of p -type, i.e. L - 1 | z | p f ( x , s , z ) L ( 1 + | z | p ) .

How to cite

top

Eleuteri, Michela. "Regularity results for a class of obstacle problems." Applications of Mathematics 52.2 (2007): 137-170. <http://eudml.org/doc/33281>.

@article{Eleuteri2007,
abstract = {We prove some optimal regularity results for minimizers of the integral functional $\int f(x,u,Du)\mathrm \{d\}x$ belonging to the class $ K:=\lbrace u \in W^\{1,p\}(\Omega )\: u\ge \psi \rbrace $, where $\psi $ is a fixed function, under standard growth conditions of $p$-type, i.e. \[ L^\{-1\}|z|^p \le f(x,s,z) \le L(1+|z|^p). \]},
author = {Eleuteri, Michela},
journal = {Applications of Mathematics},
keywords = {regularity results; local minimizers; integral functionals; obstacle problems; standard growth conditions; regularity results; local minimizers; integral functionals; obstacle problems; standard growth conditions},
language = {eng},
number = {2},
pages = {137-170},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Regularity results for a class of obstacle problems},
url = {http://eudml.org/doc/33281},
volume = {52},
year = {2007},
}

TY - JOUR
AU - Eleuteri, Michela
TI - Regularity results for a class of obstacle problems
JO - Applications of Mathematics
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 2
SP - 137
EP - 170
AB - We prove some optimal regularity results for minimizers of the integral functional $\int f(x,u,Du)\mathrm {d}x$ belonging to the class $ K:=\lbrace u \in W^{1,p}(\Omega )\: u\ge \psi \rbrace $, where $\psi $ is a fixed function, under standard growth conditions of $p$-type, i.e. \[ L^{-1}|z|^p \le f(x,s,z) \le L(1+|z|^p). \]
LA - eng
KW - regularity results; local minimizers; integral functionals; obstacle problems; standard growth conditions; regularity results; local minimizers; integral functionals; obstacle problems; standard growth conditions
UR - http://eudml.org/doc/33281
ER -

References

top
  1. 10.1007/s002050100117, Arch. Ration. Mech. Anal. 156 (2001), 121–140. (2001) MR1814973DOI10.1007/s002050100117
  2. 10.1007/BF00376141, Arch. Ration. Mech. Anal. 114 (1991), 383–394. (1991) Zbl0733.35024MR1100802DOI10.1007/BF00376141
  3. 10.1016/S0764-4442(99)80226-2, C. R.  Acad. Sci. Paris Sér. I Math. 328 (1999), 363–368. (1999) MR1675954DOI10.1016/S0764-4442(99)80226-2
  4. 10.1006/jmaa.1999.6410, J.  Math. Anal. Appl. 235 (1999), 578–597. (1999) MR1703712DOI10.1006/jmaa.1999.6410
  5. Hölder continuity for local minimizers of a nonconvex variational problem, J.  Convex Anal. 10 (2003), 389–408. (2003) MR2043864
  6. Morrey spaces and local regularity of minimizers of variational integrals, Rend. Mat. Appl., VII.  Ser. 21 (2001), 121–141. (2001) MR1884939
  7. 10.1090/S0273-0979-1979-14595-6, Bull. Am. Math. Soc. 3 (1979), 443–474. (1979) Zbl0441.49011MR0526967DOI10.1090/S0273-0979-1979-14595-6
  8. Hölder continuity results for a class of functionals with non standard growth, Boll. Unione Mat. Ital. 8, 7-B (2004), 129–157. (2004) Zbl1178.49045MR2044264
  9. 10.1515/form.2002.011, Forum Math. 14 (2002), 245–272. (2002) MR1880913DOI10.1515/form.2002.011
  10. 10.1006/jmaa.1996.0301, J.  Math. Anal. Appl. 202 (1996), 27–52. (1996) MR1402586DOI10.1006/jmaa.1996.0301
  11. Regularity results for anisotropic image segmentation models, Ann. Sc. Norm. Super. Pisa 24 (1997), 463–499. (1997) MR1612389
  12. 10.1051/cocv:2002004, ESAIM, Control Optim. Calc. Var. 7 (2002), 69–95. (2002) MR1925022DOI10.1051/cocv:2002004
  13. 10.1007/BF01171703, Manuscr. Math. 54 (1985), 121–143. (1985) MR0808684DOI10.1007/BF01171703
  14. 10.1016/S0294-1449(16)30429-2, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1 (1984), 79–107. (1984) MR0778969DOI10.1016/S0294-1449(16)30429-2
  15. Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1977. (1977) MR0473443
  16. Direct Methods in the Calculus of Variations, World Scientific, Singapore, 2003. (2003) Zbl1028.49001MR1962933
  17. 10.1016/0022-0396(88)90070-8, J.  Differ. Equations 76 (1988), 203–212. (1988) Zbl0674.35008MR0969420DOI10.1016/0022-0396(88)90070-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.