Weak solutions for elliptic systems with variable growth in Clifford analysis

Yongqiang Fu; Binlin Zhang

Czechoslovak Mathematical Journal (2013)

  • Volume: 63, Issue: 3, page 643-670
  • ISSN: 0011-4642

Abstract

top
In this paper we consider the following Dirichlet problem for elliptic systems: D A ( x , u ( x ) , D u ( x ) ) ¯ = B ( x , u ( x ) , D u ( x ) ) , x Ω , u ( x ) = 0 , x Ω , where D is a Dirac operator in Euclidean space, u ( x ) is defined in a bounded Lipschitz domain Ω in n and takes value in Clifford algebras. We first introduce variable exponent Sobolev spaces of Clifford-valued functions, then discuss the properties of these spaces and the related operator theory in these spaces. Using the Galerkin method, we obtain the existence of weak solutions to the scalar part of the above-mentioned systems in the space W 0 1 , p ( x ) ( Ω , C n ) under appropriate assumptions.

How to cite

top

Fu, Yongqiang, and Zhang, Binlin. "Weak solutions for elliptic systems with variable growth in Clifford analysis." Czechoslovak Mathematical Journal 63.3 (2013): 643-670. <http://eudml.org/doc/260666>.

@article{Fu2013,
abstract = {In this paper we consider the following Dirichlet problem for elliptic systems: \[ \begin\{aligned\} \overline\{DA(x,u(x),Du(x))\}=&B(x,u(x),Du(x)),\quad x\in \Omega ,\cr u(x)=&0,\quad x\in \partial \Omega , \end\{aligned\} \] where $D$ is a Dirac operator in Euclidean space, $u(x)$ is defined in a bounded Lipschitz domain $\Omega $ in $\mathbb \{R\}^\{n\}$ and takes value in Clifford algebras. We first introduce variable exponent Sobolev spaces of Clifford-valued functions, then discuss the properties of these spaces and the related operator theory in these spaces. Using the Galerkin method, we obtain the existence of weak solutions to the scalar part of the above-mentioned systems in the space $W_\{0\}^\{1,p(x)\}(\Omega , \{\rm C\}\ell _\{n\})$ under appropriate assumptions.},
author = {Fu, Yongqiang, Zhang, Binlin},
journal = {Czechoslovak Mathematical Journal},
keywords = {elliptic system; Clifford analysis; variable exponent; Dirichlet problem; elliptic system; Clifford analysis; variable exponent; Dirichlet problem},
language = {eng},
number = {3},
pages = {643-670},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weak solutions for elliptic systems with variable growth in Clifford analysis},
url = {http://eudml.org/doc/260666},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Fu, Yongqiang
AU - Zhang, Binlin
TI - Weak solutions for elliptic systems with variable growth in Clifford analysis
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 3
SP - 643
EP - 670
AB - In this paper we consider the following Dirichlet problem for elliptic systems: \[ \begin{aligned} \overline{DA(x,u(x),Du(x))}=&B(x,u(x),Du(x)),\quad x\in \Omega ,\cr u(x)=&0,\quad x\in \partial \Omega , \end{aligned} \] where $D$ is a Dirac operator in Euclidean space, $u(x)$ is defined in a bounded Lipschitz domain $\Omega $ in $\mathbb {R}^{n}$ and takes value in Clifford algebras. We first introduce variable exponent Sobolev spaces of Clifford-valued functions, then discuss the properties of these spaces and the related operator theory in these spaces. Using the Galerkin method, we obtain the existence of weak solutions to the scalar part of the above-mentioned systems in the space $W_{0}^{1,p(x)}(\Omega , {\rm C}\ell _{n})$ under appropriate assumptions.
LA - eng
KW - elliptic system; Clifford analysis; variable exponent; Dirichlet problem; elliptic system; Clifford analysis; variable exponent; Dirichlet problem
UR - http://eudml.org/doc/260666
ER -

References

top
  1. Abłamowicz, R., Fauser, B., eds., Clifford Algebras and Their Applications in Mathematical Physics, Proceedings of the 5th Conference, Ixtapa-Zihuatanejo, Mexico, June 27--July 4, 1999. Volume 1: Algebra and Physics. Progress in Physics 18 Birkhäuser, Boston (2000). (2000) MR1783520
  2. Abreu-Blaya, R., Bory-Reyes, J., Delanghe, R., Sommen, F., 10.1007/s00006-007-0034-y, Adv. Appl. Clifford Algebr. 17 (2007), 589-610. (2007) Zbl1134.30336MR2356260DOI10.1007/s00006-007-0034-y
  3. Acerbi, E., Fusco, N., 10.1007/BF00275731, Arch. Ration. Mech. Anal. 86 (1984), 125-135. (1984) Zbl0565.49010MR0751305DOI10.1007/BF00275731
  4. Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext Springer, New York (2011). (2011) Zbl1220.46002MR2759829
  5. Dacorogna, B., 10.1007/BFb0096144, Lecture Notes in Mathematics 922 Springer, Berlin (1982). (1982) Zbl0484.46041MR0658130DOI10.1007/BFb0096144
  6. Delanghe, R., Sommen, F., Souček, V., Clifford Algebra and Spinor-Valued Functions. A Function Theory for the Dirac Operator, Related REDUCE Software by F. Brackx and D. Constales. Mathematics and its Applications Kluwer Academic Publishers, Dordrecht (1992). (1992) Zbl0747.53001MR1169463
  7. Diening, L., Harjulehto, P., Hästö, P., Růžička, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017 Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542
  8. Doran, C., Lasenby, A., Geometric Algebra for Physicists, Cambridge University Press Cambridge (2003). (2003) Zbl1078.53001MR1998960
  9. Ekeland, I., Témam, R., Convex Analysis and Variational Problems, Unabridged, corrected republication of the 1976 English original. Classics in Applied Mathematics 28 Society for Industrial and Applied Mathematics, Philadelphia (1999). (1999) Zbl0939.49002MR1727362
  10. Eisen, G., 10.1007/BF01297738, Manuscr. Math. 27 (1979), 73-79. (1979) Zbl0404.28004MR0524978DOI10.1007/BF01297738
  11. Fan, X., Zhao, D., On the spaces L p ( x ) { Ω } and W m , p ( x ) { Ω } , J. Math. Anal. Appl. 263 (2001), 424-446. (2001) Zbl1028.46041MR1866056
  12. Fan, X., Shen, J., Zhao, D., 10.1006/jmaa.2001.7618, J. Math. Anal. Appl. 262 (2001), 749-760. (2001) Zbl0995.46023MR1859337DOI10.1006/jmaa.2001.7618
  13. Fan, X., Zhang, Q., 10.1016/S0362-546X(02)00150-5, Nonlinear Anal., Theory Methods Appl. 52 (2003), 1843-1852. (2003) Zbl1146.35353MR1954585DOI10.1016/S0362-546X(02)00150-5
  14. Fu, Y., 10.1016/j.na.2004.02.032, Nonlinear Anal., Theory Methods Appl. 59 (2004), 371-383. (2004) Zbl1064.46022MR2093096DOI10.1016/j.na.2004.02.032
  15. Fu, Y., Dong, Z., Yan, Y., 10.1016/S0362-546X(00)00227-3, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 48 (2002), 961-977. (2002) Zbl1219.35088MR1880257DOI10.1016/S0362-546X(00)00227-3
  16. Fu, Y., Zhang, B., 10.1007/s00006-013-0383-7, Advances in Applied Clifford Algebras 23 (2013), 363-376. (2013) MR3068124DOI10.1007/s00006-013-0383-7
  17. Gilbert, J. E., Murray, M. A. M., Clifford Algebra and Dirac Operators in Harmonic Analysis, Paperback reprint of the hardback edition 1991. Cambridge Studies in Advanced Mathematics 26 Cambridge University Press, Cambridge (2008). (2008) MR1130821
  18. Gürlebeck, K., Sprößig, W., Quaternionic and Clifford Calculus for Physicists and Engineers, Mathematical Methods in Practice Wiley, Chichester (1997). (1997) Zbl0897.30023
  19. Gürlebeck, K., Habetha, K., Sprößig, W., Holomorphic Functions in the Plane and n -dimensional Space, Transl. from the German Birkhäuser, Basel (2008). (2008) Zbl1132.30001MR2369875
  20. Gürlebeck, K., Kähler, U., Ryan, J., Sprößig, W., 10.1006/aama.1997.0541, Adv. Appl. Math. 19 (1997), 216-239. (1997) Zbl0877.30026MR1459499DOI10.1006/aama.1997.0541
  21. Gürlebeck, K., Sprößig, W., Quaternionic Analysis and Elliptic Boundary Value Problems, International Series of Numerical Mathematics 89 Birkhäuser, Basel (1990). (1990) Zbl0850.35001MR1096955
  22. Harjulehto, P., Hästö, P., Lê, Ú. V., Nuortio, M., 10.1016/j.na.2010.02.033, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 4551-4574. (2010) Zbl1188.35072MR2639204DOI10.1016/j.na.2010.02.033
  23. Heinonen, J., Kilpeläinen, T., Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Unabridged republication of the 1993 original Dover Publications, Mineola (2006). (2006) Zbl1115.31001MR2305115
  24. Kováčik, O., Rákosník, J., On spaces L p ( x ) and W k , p ( x ) , Czech. Math. J. 41 (1991), 592-618. (1991) MR1134951
  25. Liu, F., 10.1512/iumj.1977.26.26051, Indiana Univ. Math. J. 26 (1977), 645-651. (1977) Zbl0368.46036MR0450488DOI10.1512/iumj.1977.26.26051
  26. Morrey, C. B., 10.1007/978-3-540-69952-1, Die Grundlehren der mathematischen Wissenschaften 130 Springer, Berlin (1966). (1966) Zbl0142.38701MR2492985DOI10.1007/978-3-540-69952-1
  27. Nolder, C. A., A -harmonic equations and the Dirac operator, J. Inequal. Appl. (2010), Article ID 124018, 9 pages. (2010) Zbl1207.35144MR2651833
  28. Nolder, C. A., 10.1007/s00006-010-0253-5, Adv. Appl. Clifford Algebr. 21 (2011), 429-440. (2011) Zbl1253.30073MR2793534DOI10.1007/s00006-010-0253-5
  29. Nolder, C. A., Ryan, J., 10.1007/s00006-009-0162-7, Adv. Appl. Clifford Algebr. 19 (2009), 391-402. (2009) Zbl1170.53028MR2524677DOI10.1007/s00006-009-0162-7
  30. Růžička, M., 10.1007/BFb0104030, Lecture Notes in Mathematics 1748 Springer, Berlin (2000). (2000) Zbl0968.76531MR1810360DOI10.1007/BFb0104030
  31. Ryan, J., Sprößig, W., eds., Clifford Algebras and Their Applications in Mathematical Physics, Papers of the 5th International Conference, Ixtapa-Zihuatanejo, Mexico, June 27--July 4, 1999. Volume 2: Clifford Analysis. Progress in Physics 19 Birkhäuser, Boston (2000). (2000) MR1771360

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.