Displaying similar documents to “Weak solutions for elliptic systems with variable growth in Clifford analysis”

External approximation of first order variational problems estimates

Cesare Davini, Roberto Paroni (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Here we present an approximation method for a rather broad class of first order variational problems in spaces of piece-wise constant functions over triangulations of the base domain. The convergence of the method is based on an inequality involving W - 1 , p norms obtained by Nečas and on the general framework of -convergence theory.

The scalar Oseen operator - Δ + / x 1 in 2

Chérif Amrouche, Hamid Bouzit (2008)

Applications of Mathematics

Similarity:

This paper solves the scalar Oseen equation, a linearized form of the Navier-Stokes equation. Because the fundamental solution has anisotropic properties, the problem is set in a Sobolev space with isotropic and anisotropic weights. We establish some existence results and regularities in L p theory.

Elliptic boundary value problem in Vanishing Mean Oscillation hypothesis

Maria Alessandra Ragusa (1999)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this note the well-posedness of the Dirichlet problem (1.2) below is proved in the class H 0 1 , p ( Ω ) for all 1 < p < and, as a consequence, the Hölder regularity of the solution u . is an elliptic second order operator with discontinuous coefficients ( V M O ) and the lower order terms belong to suitable Lebesgue spaces.