On Existence and Asymptotic Properties of Kneser Solutions to Singular Second Order ODE.

Jana Vampolová

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2013)

  • Volume: 52, Issue: 1, page 135-152
  • ISSN: 0231-9721

Abstract

top
We investigate an asymptotic behaviour of damped non-oscillatory solutions of the initial value problem with a time singularity p ( t ) u ' ( t ) ' + p ( t ) f ( u ( t ) ) = 0 , u ( 0 ) = u 0 , u ' ( 0 ) = 0 on the unbounded domain [ 0 , ) . Function f is locally Lipschitz continuous on and has at least three zeros L 0 < 0 , 0 and L > 0 . The initial value u 0 ( L 0 , L ) { 0 } . Function p is continuous on [ 0 , ) , has a positive continuous derivative on ( 0 , ) and p ( 0 ) = 0 . Asymptotic formulas for damped non-oscillatory solutions and their first derivatives are derived under some additional assumptions. Further, we provide conditions for functions p and f , which guarantee the existence of Kneser solutions.

How to cite

top

Vampolová, Jana. "On Existence and Asymptotic Properties of Kneser Solutions to Singular Second Order ODE.." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 52.1 (2013): 135-152. <http://eudml.org/doc/260693>.

@article{Vampolová2013,
abstract = {We investigate an asymptotic behaviour of damped non-oscillatory solutions of the initial value problem with a time singularity $\left( p(t)u^\{\prime \}(t) \right)^\{\prime \} + p(t)f ( u(t) )=0$, $u(0)=u_0$, $u^\{\prime \}(0)=0$ on the unbounded domain $[0,\infty )$. Function $f$ is locally Lipschitz continuous on $\mathbb \{R\}$ and has at least three zeros $L_0 <0$, $0$ and $L>0$. The initial value $u_0\in (L_0, L)\setminus \lbrace 0\rbrace $. Function $p$ is continuous on $[0,\infty ),$ has a positive continuous derivative on $(0,\infty )$ and $p(0)=0$. Asymptotic formulas for damped non-oscillatory solutions and their first derivatives are derived under some additional assumptions. Further, we provide conditions for functions $p$ and $f$, which guarantee the existence of Kneser solutions.},
author = {Vampolová, Jana},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {singular ordinary differential equation of the second order; time singularities; unbounded domain; asymptotic properties; Kneser solutions; damped solutions; non-oscillatory solutions; singular differential equation; Kneser solution; nonoscillatory solution},
language = {eng},
number = {1},
pages = {135-152},
publisher = {Palacký University Olomouc},
title = {On Existence and Asymptotic Properties of Kneser Solutions to Singular Second Order ODE.},
url = {http://eudml.org/doc/260693},
volume = {52},
year = {2013},
}

TY - JOUR
AU - Vampolová, Jana
TI - On Existence and Asymptotic Properties of Kneser Solutions to Singular Second Order ODE.
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2013
PB - Palacký University Olomouc
VL - 52
IS - 1
SP - 135
EP - 152
AB - We investigate an asymptotic behaviour of damped non-oscillatory solutions of the initial value problem with a time singularity $\left( p(t)u^{\prime }(t) \right)^{\prime } + p(t)f ( u(t) )=0$, $u(0)=u_0$, $u^{\prime }(0)=0$ on the unbounded domain $[0,\infty )$. Function $f$ is locally Lipschitz continuous on $\mathbb {R}$ and has at least three zeros $L_0 <0$, $0$ and $L>0$. The initial value $u_0\in (L_0, L)\setminus \lbrace 0\rbrace $. Function $p$ is continuous on $[0,\infty ),$ has a positive continuous derivative on $(0,\infty )$ and $p(0)=0$. Asymptotic formulas for damped non-oscillatory solutions and their first derivatives are derived under some additional assumptions. Further, we provide conditions for functions $p$ and $f$, which guarantee the existence of Kneser solutions.
LA - eng
KW - singular ordinary differential equation of the second order; time singularities; unbounded domain; asymptotic properties; Kneser solutions; damped solutions; non-oscillatory solutions; singular differential equation; Kneser solution; nonoscillatory solution
UR - http://eudml.org/doc/260693
ER -

References

top
  1. Abraham, F. F., Homogeneous Nucleation Theory, Acad. Press, New York, 1974. (1974) 
  2. Bartušek, M., Cecchi, M., Došlá, Z., Marini, M., 10.1016/j.jmaa.2005.06.057, J. Math. Anal. Appl. 320 (2006), 108–120. (2006) Zbl1103.34016MR2230460DOI10.1016/j.jmaa.2005.06.057
  3. Bongiorno, V., Scriven, L. E., Davis, H. T., 10.1016/0021-9797(76)90225-3, J. Colloid and Interface Science 57 (1967), 462–475. (1967) DOI10.1016/0021-9797(76)90225-3
  4. Cecchi, M., Marini, M., Villari, G., 10.1006/jdeq.1995.1079, J. Differential Equations 118 (1995), 403–419. (1995) Zbl0827.34020MR1330834DOI10.1006/jdeq.1995.1079
  5. Cecchi, M., Marini, M., Villari, G., 10.1007/s000300050071, NoDea 6 (1999), 173–190. (1999) Zbl0927.34023MR1694795DOI10.1007/s000300050071
  6. Derrick, G. H., 10.1063/1.1704233, J. Math. Physics 5 (1965), 1252–1254. (1965) MR0174304DOI10.1063/1.1704233
  7. Fife, P. C., Mathematical Aspects of Reacting and Diffusing Systems, Lecture notes in Biomathematics Springer 28 (1979), 223–224. (1979) Zbl0403.92004MR0527914
  8. Fischer, R. A., 10.1111/j.1469-1809.1937.tb02153.x, Journ. of Eugenics 7 (1937), 355–369. (1937) DOI10.1111/j.1469-1809.1937.tb02153.x
  9. Gouin, H., Rotoli, G., 10.1016/S0093-6413(97)00022-0, Mech. Research Communic. 24 (1997), 255–260. (1997) Zbl0899.76064DOI10.1016/S0093-6413(97)00022-0
  10. Ho, L. F., 10.1016/S0362-546X(98)00298-3, Nonlinear Analysis 41 (2000), 573–589. (2000) Zbl0962.34019MR1780633DOI10.1016/S0362-546X(98)00298-3
  11. Jaroš, J., Kusano, T., Tanigawa, T., 10.1016/j.na.2005.05.045, Nonlinear Analysis 64 (2006), 762–787. (2006) Zbl1103.34017MR2197094DOI10.1016/j.na.2005.05.045
  12. Kiguradze, I., Chanturia, T., Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Kluwer Acad. Publ., Dordrecht, 1993. (1993) Zbl0782.34002MR1220223
  13. Kulenović, M. R. S., Ljubović, Ć., 10.1016/S0893-9659(00)00041-0, Applied Mathematics Letters 13 (2000), 107–110. (2000) MR1760271DOI10.1016/S0893-9659(00)00041-0
  14. Kusano, T., Manojlović, J. V., 10.1007/s10231-010-0166-x, Annali di Matematica Pura ed Applicata 190 (2011), 619–644. (2011) Zbl1245.34039MR2861062DOI10.1007/s10231-010-0166-x
  15. Kwong, M. K., Wong, J. S. W., 10.1016/j.na.2005.07.015, Nonlinear Analysis 64 (2006), 1641–1646. (2006) Zbl1099.34033MR2200164DOI10.1016/j.na.2005.07.015
  16. Kwong, M. K., Wong, J. S. W., 10.1016/j.jde.2007.03.021, J. Differential Equations 238 (2007), 18–42. (2007) Zbl1125.34023MR2334590DOI10.1016/j.jde.2007.03.021
  17. Li, W. T., 10.1006/jmaa.1997.5680, J. Math. Anal. Appl. 217 (1998), 1–14. (1998) Zbl0893.34023DOI10.1006/jmaa.1997.5680
  18. Lima, P. M., Chemetov, N. V., Konyukhova, N. B., Sukov, A. I., 10.1016/j.cam.2005.05.004, J. Comp. Appl. Math. 189 (2006), 260–273. (2006) Zbl1100.65066MR2202978DOI10.1016/j.cam.2005.05.004
  19. Linde, A. P., Particle Physics and Inflationary Cosmology, Harwood Academic, Chur, Switzerland, 1990. (1990) 
  20. Ou, C. H., Wong, J. S. W., 10.1016/S0022-247X(02)00617-0, J. Math. Anal. Appl. 277 (2003), 670–680. (2003) Zbl1027.34039MR1961253DOI10.1016/S0022-247X(02)00617-0
  21. O’Regan, D., Existence theory for nonlinear ordinary differential equations, Kluwer, Dordrecht, 1997. (1997) Zbl1077.34505MR1449397
  22. Rachůnková, I., Rachůnek, L., Asymptotic formula for oscillatory solutions of some singular nonlinear differential equation, Abstract and Applied Analysis 2011 (2011), 1–9. (2011) Zbl1222.34034
  23. Rachůnková, I., Tomeček, J., 10.1016/j.mcm.2009.10.042, Mathematical and Computer Modelling 51 (2010), 658–669. (2010) DOI10.1016/j.mcm.2009.10.042
  24. Rachůnková, I., Rachůnek, L., Tomeček, J., Existence of oscillatory solutions of singular nonlinear differential equations, Abstract and Applied Analysis 2011 (2011), 20 pages. (2011) Zbl1222.34035MR2795071
  25. Rachůnková, I., Tomeček, J., 10.1016/j.na.2009.10.011, Nonlinear Analysis 72 (2010), 2114–2118. (2010) Zbl1186.34014MR2577608DOI10.1016/j.na.2009.10.011
  26. Rachůnková, I., Tomeček, J., Homoclinic solutions of singular nonautonomous second order differential equations, Boundary Value Problems 2009 (2009), 1–21. (2009) Zbl1190.34028
  27. Rohleder, M., On the existence of oscillatory solutions of the second order nonlinear ODE, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 51, 2 (2012), 107–127. (2012) Zbl1279.34050MR3058877
  28. van der Waals, J. D., Kohnstamm, R., Lehrbuch der Thermodynamik, 1, Leipzig, 1908. (1908) 
  29. Wong, J. S. W., Second–order nonlinear oscillations: A case history, In: Proceedings of the Conference on Differential & Difference Equations and Applications Hindawi (2006), 1131–1138. (2006) Zbl1147.34024MR2309447
  30. Wong, P. J. Y., Agarwal, R. P., 10.1006/jmaa.1996.0086, J. Math. Anal. Appl. 198 (1996), 337–354. (1996) Zbl0855.34039MR1376268DOI10.1006/jmaa.1996.0086
  31. Wong, P. J. Y., Agarwal, R. P., The oscillation and asymptotically monotone solutions of second order quasilinear differential equations, Appl. Math. Comput. 79 (1996),207–237. (1996) MR1407599

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.