On Existence and Asymptotic Properties of Kneser Solutions to Singular Second Order ODE.
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2013)
- Volume: 52, Issue: 1, page 135-152
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topVampolová, Jana. "On Existence and Asymptotic Properties of Kneser Solutions to Singular Second Order ODE.." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 52.1 (2013): 135-152. <http://eudml.org/doc/260693>.
@article{Vampolová2013,
abstract = {We investigate an asymptotic behaviour of damped non-oscillatory solutions of the initial value problem with a time singularity $\left( p(t)u^\{\prime \}(t) \right)^\{\prime \} + p(t)f ( u(t) )=0$, $u(0)=u_0$, $u^\{\prime \}(0)=0$ on the unbounded domain $[0,\infty )$. Function $f$ is locally Lipschitz continuous on $\mathbb \{R\}$ and has at least three zeros $L_0 <0$, $0$ and $L>0$. The initial value $u_0\in (L_0, L)\setminus \lbrace 0\rbrace $. Function $p$ is continuous on $[0,\infty ),$ has a positive continuous derivative on $(0,\infty )$ and $p(0)=0$. Asymptotic formulas for damped non-oscillatory solutions and their first derivatives are derived under some additional assumptions. Further, we provide conditions for functions $p$ and $f$, which guarantee the existence of Kneser solutions.},
author = {Vampolová, Jana},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {singular ordinary differential equation of the second order; time singularities; unbounded domain; asymptotic properties; Kneser solutions; damped solutions; non-oscillatory solutions; singular differential equation; Kneser solution; nonoscillatory solution},
language = {eng},
number = {1},
pages = {135-152},
publisher = {Palacký University Olomouc},
title = {On Existence and Asymptotic Properties of Kneser Solutions to Singular Second Order ODE.},
url = {http://eudml.org/doc/260693},
volume = {52},
year = {2013},
}
TY - JOUR
AU - Vampolová, Jana
TI - On Existence and Asymptotic Properties of Kneser Solutions to Singular Second Order ODE.
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2013
PB - Palacký University Olomouc
VL - 52
IS - 1
SP - 135
EP - 152
AB - We investigate an asymptotic behaviour of damped non-oscillatory solutions of the initial value problem with a time singularity $\left( p(t)u^{\prime }(t) \right)^{\prime } + p(t)f ( u(t) )=0$, $u(0)=u_0$, $u^{\prime }(0)=0$ on the unbounded domain $[0,\infty )$. Function $f$ is locally Lipschitz continuous on $\mathbb {R}$ and has at least three zeros $L_0 <0$, $0$ and $L>0$. The initial value $u_0\in (L_0, L)\setminus \lbrace 0\rbrace $. Function $p$ is continuous on $[0,\infty ),$ has a positive continuous derivative on $(0,\infty )$ and $p(0)=0$. Asymptotic formulas for damped non-oscillatory solutions and their first derivatives are derived under some additional assumptions. Further, we provide conditions for functions $p$ and $f$, which guarantee the existence of Kneser solutions.
LA - eng
KW - singular ordinary differential equation of the second order; time singularities; unbounded domain; asymptotic properties; Kneser solutions; damped solutions; non-oscillatory solutions; singular differential equation; Kneser solution; nonoscillatory solution
UR - http://eudml.org/doc/260693
ER -
References
top- Abraham, F. F., Homogeneous Nucleation Theory, Acad. Press, New York, 1974. (1974)
- Bartušek, M., Cecchi, M., Došlá, Z., Marini, M., 10.1016/j.jmaa.2005.06.057, J. Math. Anal. Appl. 320 (2006), 108–120. (2006) Zbl1103.34016MR2230460DOI10.1016/j.jmaa.2005.06.057
- Bongiorno, V., Scriven, L. E., Davis, H. T., 10.1016/0021-9797(76)90225-3, J. Colloid and Interface Science 57 (1967), 462–475. (1967) DOI10.1016/0021-9797(76)90225-3
- Cecchi, M., Marini, M., Villari, G., 10.1006/jdeq.1995.1079, J. Differential Equations 118 (1995), 403–419. (1995) Zbl0827.34020MR1330834DOI10.1006/jdeq.1995.1079
- Cecchi, M., Marini, M., Villari, G., 10.1007/s000300050071, NoDea 6 (1999), 173–190. (1999) Zbl0927.34023MR1694795DOI10.1007/s000300050071
- Derrick, G. H., 10.1063/1.1704233, J. Math. Physics 5 (1965), 1252–1254. (1965) MR0174304DOI10.1063/1.1704233
- Fife, P. C., Mathematical Aspects of Reacting and Diffusing Systems, Lecture notes in Biomathematics Springer 28 (1979), 223–224. (1979) Zbl0403.92004MR0527914
- Fischer, R. A., 10.1111/j.1469-1809.1937.tb02153.x, Journ. of Eugenics 7 (1937), 355–369. (1937) DOI10.1111/j.1469-1809.1937.tb02153.x
- Gouin, H., Rotoli, G., 10.1016/S0093-6413(97)00022-0, Mech. Research Communic. 24 (1997), 255–260. (1997) Zbl0899.76064DOI10.1016/S0093-6413(97)00022-0
- Ho, L. F., 10.1016/S0362-546X(98)00298-3, Nonlinear Analysis 41 (2000), 573–589. (2000) Zbl0962.34019MR1780633DOI10.1016/S0362-546X(98)00298-3
- Jaroš, J., Kusano, T., Tanigawa, T., 10.1016/j.na.2005.05.045, Nonlinear Analysis 64 (2006), 762–787. (2006) Zbl1103.34017MR2197094DOI10.1016/j.na.2005.05.045
- Kiguradze, I., Chanturia, T., Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Kluwer Acad. Publ., Dordrecht, 1993. (1993) Zbl0782.34002MR1220223
- Kulenović, M. R. S., Ljubović, Ć., 10.1016/S0893-9659(00)00041-0, Applied Mathematics Letters 13 (2000), 107–110. (2000) MR1760271DOI10.1016/S0893-9659(00)00041-0
- Kusano, T., Manojlović, J. V., 10.1007/s10231-010-0166-x, Annali di Matematica Pura ed Applicata 190 (2011), 619–644. (2011) Zbl1245.34039MR2861062DOI10.1007/s10231-010-0166-x
- Kwong, M. K., Wong, J. S. W., 10.1016/j.na.2005.07.015, Nonlinear Analysis 64 (2006), 1641–1646. (2006) Zbl1099.34033MR2200164DOI10.1016/j.na.2005.07.015
- Kwong, M. K., Wong, J. S. W., 10.1016/j.jde.2007.03.021, J. Differential Equations 238 (2007), 18–42. (2007) Zbl1125.34023MR2334590DOI10.1016/j.jde.2007.03.021
- Li, W. T., 10.1006/jmaa.1997.5680, J. Math. Anal. Appl. 217 (1998), 1–14. (1998) Zbl0893.34023DOI10.1006/jmaa.1997.5680
- Lima, P. M., Chemetov, N. V., Konyukhova, N. B., Sukov, A. I., 10.1016/j.cam.2005.05.004, J. Comp. Appl. Math. 189 (2006), 260–273. (2006) Zbl1100.65066MR2202978DOI10.1016/j.cam.2005.05.004
- Linde, A. P., Particle Physics and Inflationary Cosmology, Harwood Academic, Chur, Switzerland, 1990. (1990)
- Ou, C. H., Wong, J. S. W., 10.1016/S0022-247X(02)00617-0, J. Math. Anal. Appl. 277 (2003), 670–680. (2003) Zbl1027.34039MR1961253DOI10.1016/S0022-247X(02)00617-0
- O’Regan, D., Existence theory for nonlinear ordinary differential equations, Kluwer, Dordrecht, 1997. (1997) Zbl1077.34505MR1449397
- Rachůnková, I., Rachůnek, L., Asymptotic formula for oscillatory solutions of some singular nonlinear differential equation, Abstract and Applied Analysis 2011 (2011), 1–9. (2011) Zbl1222.34034
- Rachůnková, I., Tomeček, J., 10.1016/j.mcm.2009.10.042, Mathematical and Computer Modelling 51 (2010), 658–669. (2010) DOI10.1016/j.mcm.2009.10.042
- Rachůnková, I., Rachůnek, L., Tomeček, J., Existence of oscillatory solutions of singular nonlinear differential equations, Abstract and Applied Analysis 2011 (2011), 20 pages. (2011) Zbl1222.34035MR2795071
- Rachůnková, I., Tomeček, J., 10.1016/j.na.2009.10.011, Nonlinear Analysis 72 (2010), 2114–2118. (2010) Zbl1186.34014MR2577608DOI10.1016/j.na.2009.10.011
- Rachůnková, I., Tomeček, J., Homoclinic solutions of singular nonautonomous second order differential equations, Boundary Value Problems 2009 (2009), 1–21. (2009) Zbl1190.34028
- Rohleder, M., On the existence of oscillatory solutions of the second order nonlinear ODE, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 51, 2 (2012), 107–127. (2012) Zbl1279.34050MR3058877
- van der Waals, J. D., Kohnstamm, R., Lehrbuch der Thermodynamik, 1, Leipzig, 1908. (1908)
- Wong, J. S. W., Second–order nonlinear oscillations: A case history, In: Proceedings of the Conference on Differential & Difference Equations and Applications Hindawi (2006), 1131–1138. (2006) Zbl1147.34024MR2309447
- Wong, P. J. Y., Agarwal, R. P., 10.1006/jmaa.1996.0086, J. Math. Anal. Appl. 198 (1996), 337–354. (1996) Zbl0855.34039MR1376268DOI10.1006/jmaa.1996.0086
- Wong, P. J. Y., Agarwal, R. P., The oscillation and asymptotically monotone solutions of second order quasilinear differential equations, Appl. Math. Comput. 79 (1996),207–237. (1996) MR1407599
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.