Monotonicity properties of oscillatory solutions of differential equation
Miroslav Bartušek; Chrysi G. Kokologiannaki
Archivum Mathematicum (2013)
- Volume: 049, Issue: 3, page 199-207
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBartušek, Miroslav, and Kokologiannaki, Chrysi G.. "Monotonicity properties of oscillatory solutions of differential equation $(a(t)\vert y^{\prime }\vert ^{p-1}y^{\prime })^{\prime }+f(t,y,y^{\prime })=0$." Archivum Mathematicum 049.3 (2013): 199-207. <http://eudml.org/doc/260737>.
@article{Bartušek2013,
abstract = {We obtain monotonicity results concerning the oscillatory solutions of the differential equation $(a(t)\vert y^\{\prime \}\vert ^\{p-1\}y^\{\prime \})^\{\prime \}+f(t,y,y^\{\prime \})=0$. The obtained results generalize the results given by the first author in [1] (1976). We also give some results concerning a special case of the above differential equation.},
author = {Bartušek, Miroslav, Kokologiannaki, Chrysi G.},
journal = {Archivum Mathematicum},
keywords = {monotonicity; oscillatory solutions; monotonicity; oscillatory solutions},
language = {eng},
number = {3},
pages = {199-207},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Monotonicity properties of oscillatory solutions of differential equation $(a(t)\vert y^\{\prime \}\vert ^\{p-1\}y^\{\prime \})^\{\prime \}+f(t,y,y^\{\prime \})=0$},
url = {http://eudml.org/doc/260737},
volume = {049},
year = {2013},
}
TY - JOUR
AU - Bartušek, Miroslav
AU - Kokologiannaki, Chrysi G.
TI - Monotonicity properties of oscillatory solutions of differential equation $(a(t)\vert y^{\prime }\vert ^{p-1}y^{\prime })^{\prime }+f(t,y,y^{\prime })=0$
JO - Archivum Mathematicum
PY - 2013
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 049
IS - 3
SP - 199
EP - 207
AB - We obtain monotonicity results concerning the oscillatory solutions of the differential equation $(a(t)\vert y^{\prime }\vert ^{p-1}y^{\prime })^{\prime }+f(t,y,y^{\prime })=0$. The obtained results generalize the results given by the first author in [1] (1976). We also give some results concerning a special case of the above differential equation.
LA - eng
KW - monotonicity; oscillatory solutions; monotonicity; oscillatory solutions
UR - http://eudml.org/doc/260737
ER -
References
top- Bartušek, M., Monotonicity theorems concerning differential equations , Arch. Math. (Brno) 12 (4) (1976), 169–178. (1976) MR0430410
- Bartušek, M., Monotonicity theorems for second order non-linear differential equations, Arch. Math. (Brno) 16 (3) (1980), 127–136. (1980) MR0594458
- Bartušek, M., On properties of oscillatory solutions of nonlinear differential equations of the -th order, Diff. Equat. and Their Appl., Equadiff 6, vol. 1192, Lecture Notes in Math., Berlin, 1985, pp. 107–113. (1985)
- Bartušek, M., On oscillatory solutions of differential inequalities, Czechoslovak Math. J. 42 (117) (1992), 45–52. (1992) Zbl0756.34033MR1152168
- Bartušek, M., Singular solutions for the differential equation with -Laplacian, Arch. Math. (Brno) 41 (2005), 123–128. (2005) Zbl1116.34325MR2142148
- Bartušek, M., Došlá, Z., Cecchi, M., Marini, M., 10.1016/j.jmaa.2005.06.057, J. Math. Anal. Appl. 320 (2006), 108–120. (2006) Zbl1103.34016MR2230460DOI10.1016/j.jmaa.2005.06.057
- Došlá, Z., Cecchi, M., Marini, M., On second order differential equations with nonhomogenous –Laplacian, Boundary Value Problems 2010 (2010), 17pp., ID 875675. (2010) MR2595170
- Došlá, Z., Háčik, M., Muldon, M. E., Further higher monotonicity properties of Sturm-Liouville function, Arch. Math. (Brno) 29 (1993), 83–96. (1993) MR1242631
- Došlý, O., Řehák, P., Half-linear differential equations, Elsevier, Amsterdam, 2005. (2005) Zbl1090.34001MR2158903
- Kiguradze, I., Chanturia, T., Asymptotic properties of solutions of nonautonomous ordinary differential equations, Kluwer, Dordrecht, 1993. (1993) Zbl0782.34002
- Lorch, L., Muldon, M. E., Szego, P., 10.4153/CJM-1970-142-1, Canad. J. Math. 22 (1970), 1238–1265. (1970) MR0274845DOI10.4153/CJM-1970-142-1
- Mirzov, J. D., Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equations, Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math., Masaryk University, Brno, 2001. (2001) MR2144761
- Naito, M., Existence of positive solutions of higher-order quasilinear ordinary differential equations, Ann. Mat. Pura Appl. (4) 186 (2007), 59–84. (2007) Zbl1232.34054MR2263331
- Rohleder, M., On the existence of oscillatory solutions of the second order nonlinear ODE, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 51 (2) (2012), 107–127. (2012) Zbl1279.34050MR3058877
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.