Displaying similar documents to “On characterized subgroups of Abelian topological groups X and the group of all X -valued null sequences”

The dual group of a dense subgroup

William Wistar Comfort, S. U. Raczkowski, F. Javier Trigos-Arrieta (2004)

Czechoslovak Mathematical Journal

Similarity:

Throughout this abstract, G is a topological Abelian group and G ^ is the space of continuous homomorphisms from G into the circle group 𝕋 in the compact-open topology. A dense subgroup D of G is said to determine G if the (necessarily continuous) surjective isomorphism G ^ D ^ given by h h | D is a homeomorphism, and G is determined if each dense subgroup of G determines G . The principal result in this area, obtained independently by L. Außenhofer and M. J. Chasco, is the following: Every metrizable...

An elementary class extending abelian-by- G groups, for G infinite

Carlo Toffalori (1996)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

We show that for no infinite group G the class of abelian-by- G groups is elementary, but, at least when G is an infinite elementary abelian p -group (with p prime), the class of groups admitting a normal abelian subgroup whose quotient group is elementarily equivalent to G is elementary.

Abelian quasinormal subgroups of groups

Stewart E. Stonehewer, Giovanni Zacher (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Let G be any group and let A be an abelian quasinormal subgroup of G . If n is any positive integer, either odd or divisible by 4 , then we prove that the subgroup A n is also quasinormal in G .

A note on a class of factorized p -groups

Enrico Jabara (2005)

Czechoslovak Mathematical Journal

Similarity:

In this note we study finite p -groups G = A B admitting a factorization by an Abelian subgroup A and a subgroup B . As a consequence of our results we prove that if B contains an Abelian subgroup of index p n - 1 then G has derived length at most 2 n .