Hexavalent -transitive graphs
Song-Tao Guo; Xiao-Hui Hua; Yan-Tao Li
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 4, page 923-931
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGuo, Song-Tao, Hua, Xiao-Hui, and Li, Yan-Tao. "Hexavalent $(G,s)$-transitive graphs." Czechoslovak Mathematical Journal 63.4 (2013): 923-931. <http://eudml.org/doc/260795>.
@article{Guo2013,
abstract = {Let $X$ be a finite simple undirected graph with a subgroup $G$ of the full automorphism group $\{\rm Aut\}(X)$. Then $X$ is said to be $(G,s)$-transitive for a positive integer $s$, if $G$ is transitive on $s$-arcs but not on $(s+1)$-arcs, and $s$-transitive if it is $(\{\rm Aut\}(X),s)$-transitive. Let $G_v$ be a stabilizer of a vertex $v\in V(X)$ in $G$. Up to now, the structures of vertex stabilizers $G_v$ of cubic, tetravalent or pentavalent $(G,s)$-transitive graphs are known. Thus, in this paper, we give the structure of the vertex stabilizers $G_v$ of connected hexavalent $(G,s)$-transitive graphs.},
author = {Guo, Song-Tao, Hua, Xiao-Hui, Li, Yan-Tao},
journal = {Czechoslovak Mathematical Journal},
keywords = {symmetric graph; $s$-transitive graph; $(G,s)$-transitive graph; -arc-transitive graphs; vertex stabilizers},
language = {eng},
number = {4},
pages = {923-931},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hexavalent $(G,s)$-transitive graphs},
url = {http://eudml.org/doc/260795},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Guo, Song-Tao
AU - Hua, Xiao-Hui
AU - Li, Yan-Tao
TI - Hexavalent $(G,s)$-transitive graphs
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 4
SP - 923
EP - 931
AB - Let $X$ be a finite simple undirected graph with a subgroup $G$ of the full automorphism group ${\rm Aut}(X)$. Then $X$ is said to be $(G,s)$-transitive for a positive integer $s$, if $G$ is transitive on $s$-arcs but not on $(s+1)$-arcs, and $s$-transitive if it is $({\rm Aut}(X),s)$-transitive. Let $G_v$ be a stabilizer of a vertex $v\in V(X)$ in $G$. Up to now, the structures of vertex stabilizers $G_v$ of cubic, tetravalent or pentavalent $(G,s)$-transitive graphs are known. Thus, in this paper, we give the structure of the vertex stabilizers $G_v$ of connected hexavalent $(G,s)$-transitive graphs.
LA - eng
KW - symmetric graph; $s$-transitive graph; $(G,s)$-transitive graph; -arc-transitive graphs; vertex stabilizers
UR - http://eudml.org/doc/260795
ER -
References
top- Bosma, W., Cannon, C., Playoust, C., 10.1006/jsco.1996.0125, J. Symb. Comput. 24 (1997), 235-265. (1997) Zbl0898.68039MR1484478DOI10.1006/jsco.1996.0125
- Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A., Atlas of Finite Groups, Maximal subgroups and ordinary characters for simple groups Clarendon Press, Oxford (1985). (1985) Zbl0568.20001MR0827219
- Dixon, J. D., Mortimer, B., Permutation Groups, Graduate Texts in Mathematics 163 Springer, New York (1996). (1996) Zbl0951.20001MR1409812
- Djoković, D. Ž., Miller, G. L., 10.1016/0095-8956(80)90081-7, J. Comb. Theory, Ser. B 29 (1980), 195-230. (1980) Zbl0385.05040MR0586434DOI10.1016/0095-8956(80)90081-7
- Gardiner, A., 10.1093/qmath/24.1.399, Q. J. Math., Oxf. II. Ser. 24 (1973), 399-407. (1973) Zbl0262.05112MR0323617DOI10.1093/qmath/24.1.399
- Gardiner, A., 10.1093/qmath/25.1.163, Q. J. Math., Oxf. II. Ser. 25 (1974), 163-167. (1974) Zbl0305.05111MR0412015DOI10.1093/qmath/25.1.163
- Gardiner, A., 10.1093/qmath/27.3.313, Q. J. Math., Oxf. II. Ser. 27 (1976), 313-323. (1976) Zbl0337.05117MR0498228DOI10.1093/qmath/27.3.313
- Guo, S. T., Feng, Y. Q., 10.1016/j.disc.2012.04.015, Discrete Math. 312 (2012), 2214-2216. (2012) Zbl1246.05105MR2926093DOI10.1016/j.disc.2012.04.015
- Li, C. H., 10.1090/S0002-9947-01-02768-4, Trans. Am. Math. Soc. (electronic) 353 (2001), 3511-3529. (2001) MR1837245DOI10.1090/S0002-9947-01-02768-4
- Potočnik, P., 10.1016/j.ejc.2008.10.001, Eur. J. Comb. 30 (2009), 1323-1336. (2009) Zbl1208.05056MR2514656DOI10.1016/j.ejc.2008.10.001
- Potočnik, P., Spiga, P., Verret, G., 10.1017/S0004972710002078, Bull. Aust. Math. Soc. 84 (2011), 79-89. (2011) Zbl1222.05102MR2817661DOI10.1017/S0004972710002078
- Stroth, G., Weiss, R., A new construction of the group , Q. J. Math., Oxf. II. Ser. 41 (1990), 237-243. (1990) Zbl0695.20015MR1053664
- Tutte, W. T., 10.1017/S0305004100023720, Proc. Camb. Philos. Soc. 43 (1947), 459-474. (1947) Zbl0029.42401MR0021678DOI10.1017/S0305004100023720
- Weiss, R. M., 10.1016/0095-8956(74)90049-5, J. Comb. Theory, Ser. B 17 (1974), 59-64 German. (1974) Zbl0298.05130MR0369151DOI10.1016/0095-8956(74)90049-5
- Weiss, R. M., 10.1007/BF01214131, Math. Z. 136 (1974), 277-278 German. (1974) Zbl0268.05110MR0360348DOI10.1007/BF01214131
- Weiss, R. M., 10.1017/S030500410005547X, Math. Proc. Camb. Philos. Soc. 85 (1979), 43-48. (1979) Zbl0392.20002MR0510398DOI10.1017/S030500410005547X
- Weiss, R. M., 10.1007/BF02579337, Combinatorica 1 (1981), 309-311. (1981) Zbl0486.05032MR0637836DOI10.1007/BF02579337
- Weiss, R. M., -transitive graphs, Algebraic Methods in Graph Theory, Vol. I, II Colloq. Math. Soc. Janos Bolyai 25 (Szeged, 1978) (1981), 827-847 North-Holland, Amsterdam. (1981) Zbl0475.05040MR0642075
- Weiss, R. M., 10.1017/S0305004100066378, Math. Proc. Camb. Phil. Soc. 101 (1987), 7-20. (1987) MR0877697DOI10.1017/S0305004100066378
- Wielandt, H., Finite Permutation Groups. Translated from the German by R. Bercov, Academic Press, New York (1964). (1964) MR0183775
- Zhou, J. X., Feng, Y. Q., 10.1016/j.disc.2009.11.019, Discrete Math. 310 (2010), 1725-1732. (2010) Zbl1225.05131MR2610275DOI10.1016/j.disc.2009.11.019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.