The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Hexavalent ( G , s ) -transitive graphs”

Arc-transitive and s-regular Cayley graphs of valency five on Abelian groups

Mehdi Alaeiyan (2006)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a finite group, and let 1 G S G . A Cayley di-graph Γ = Cay(G,S) of G relative to S is a di-graph with a vertex set G such that, for x,y ∈ G, the pair (x,y) is an arc if and only if y x - 1 S . Further, if S = S - 1 : = s - 1 | s S , then Γ is undirected. Γ is conected if and only if G = ⟨s⟩. A Cayley (di)graph Γ = Cay(G,S) is called normal if the right regular representation of G is a normal subgroup of the automorphism group of Γ. A graph Γ is said to be arc-transitive, if Aut(Γ) is transitive on an arc set. Also,...

Strong Transitivity and Graph Maps

Katsuya Yokoi (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We study the relation between transitivity and strong transitivity, introduced by W. Parry, for graph self-maps. We establish that if a graph self-map f is transitive and the set of fixed points of f k is finite for each k ≥ 1, then f is strongly transitive. As a corollary, if a piecewise monotone graph self-map is transitive, then it is strongly transitive.

On k -strong distance in strong digraphs

Ping Zhang (2002)

Mathematica Bohemica

Similarity:

For a nonempty set S of vertices in a strong digraph D , the strong distance d ( S ) is the minimum size of a strong subdigraph of D containing the vertices of S . If S contains k vertices, then d ( S ) is referred to as the k -strong distance of S . For an integer k 2 and a vertex v of a strong digraph D , the k -strong eccentricity s e k ( v ) of v is the maximum k -strong distance d ( S ) among all sets S of k vertices in D containing v . The minimum k -strong eccentricity among the vertices of D is its k -strong radius...

Restrained domination in unicyclic graphs

Johannes H. Hattingh, Ernst J. Joubert, Marc Loizeaux, Andrew R. Plummer, Lucas van der Merwe (2009)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V,E) be a graph. A set S ⊆ V is a restrained dominating set if every vertex in V-S is adjacent to a vertex in S and to a vertex in V-S. The restrained domination number of G, denoted by γ r ( G ) , is the minimum cardinality of a restrained dominating set of G. A unicyclic graph is a connected graph that contains precisely one cycle. We show that if U is a unicyclic graph of order n, then γ r ( U ) n / 3 , and provide a characterization of graphs achieving this bound.

On Lee's conjecture and some results

Lixia Fan, Zhihe Liang (2009)

Discussiones Mathematicae Graph Theory

Similarity:

S.M. Lee proposed the conjecture: for any n > 1 and any permutation f in S(n), the permutation graph P(Pₙ,f) is graceful. For any integer n > 1 and permutation f in S(n), we discuss the gracefulness of the permutation graph P(Pₙ,f) if f = k = 0 l - 1 ( m + 2 k , m + 2 k + 1 ) , and k = 0 l - 1 ( m + 4 k , m + 4 k + 2 ) ( m + 4 k + 1 , m + 4 k + 3 ) for any positive integers m and l.

Distance in stratified graphs

Gary Chartrand, Lisa Hansen, Reza Rashidi, Naveed Sherwani (2000)

Czechoslovak Mathematical Journal

Similarity:

A graph G is stratified if its vertex set is partitioned into classes, called strata. If there are k strata, then G is k -stratified. These graphs were introduced to study problems in VLSI design. The strata in a stratified graph are also referred to as color classes. For a color X in a stratified graph G , the X -eccentricity e X ( v ) of a vertex v of G is the distance between v and an X -colored vertex furthest from v . The minimum X -eccentricity among the vertices of G is the X -radius r a d X G of G ...

More classes of non-orbit-transitive operators

Carl Pearcy, Lidia Smith (2010)

Studia Mathematica

Similarity:

In [JKP] and its sequel [FPS] the authors initiated a program whose (announced) goal is to eventually show that no operator in ℒ(ℋ) is orbit-transitive. In [JKP] it is shown, for example, that if T ∈ ℒ(ℋ) and the essential (Calkin) norm of T is equal to its essential spectral radius, then no compact perturbation of T is orbit-transitive, and in [FPS] this result is extended to say that no element of this same class of operators is weakly orbit-transitive. In the present note we show...