Method of infinite ascent applied on - ( 2 p · A 6 ) + B 3 = C 2

Susil Kumar Jena

Communications in Mathematics (2013)

  • Volume: 21, Issue: 2, page 173-178
  • ISSN: 1804-1388

Abstract

top
In this paper, the author shows a technique of generating an infinite number of coprime integral solutions for ( A , B , C ) of the Diophantine equation - ( 2 p · A 6 ) + B 3 = C 2 for any positive integral values of p when p 1 (mod 6) or p 2 (mod 6). For doing this, we will be using a published result of this author in The Mathematics Student, a periodical of the Indian Mathematical Society.

How to cite

top

Jena, Susil Kumar. "Method of infinite ascent applied on $-(2^p\cdot A^6)+B^3=C^2$." Communications in Mathematics 21.2 (2013): 173-178. <http://eudml.org/doc/260799>.

@article{Jena2013,
abstract = {In this paper, the author shows a technique of generating an infinite number of coprime integral solutions for $(A,B,C)$ of the Diophantine equation $-(2^p\cdot A^6) + B^3 = C^2$ for any positive integral values of $p$ when $p \equiv 1$ (mod 6) or $p \equiv 2$ (mod 6). For doing this, we will be using a published result of this author in The Mathematics Student, a periodical of the Indian Mathematical Society.},
author = {Jena, Susil Kumar},
journal = {Communications in Mathematics},
keywords = {higher order Diophantine equations; method of infinite ascent; Diophantine equation $-(2^p\cdot A^6) + B^3 = C^2$; higher degree Diophantine equations; method of infinite ascent},
language = {eng},
number = {2},
pages = {173-178},
publisher = {University of Ostrava},
title = {Method of infinite ascent applied on $-(2^p\cdot A^6)+B^3=C^2$},
url = {http://eudml.org/doc/260799},
volume = {21},
year = {2013},
}

TY - JOUR
AU - Jena, Susil Kumar
TI - Method of infinite ascent applied on $-(2^p\cdot A^6)+B^3=C^2$
JO - Communications in Mathematics
PY - 2013
PB - University of Ostrava
VL - 21
IS - 2
SP - 173
EP - 178
AB - In this paper, the author shows a technique of generating an infinite number of coprime integral solutions for $(A,B,C)$ of the Diophantine equation $-(2^p\cdot A^6) + B^3 = C^2$ for any positive integral values of $p$ when $p \equiv 1$ (mod 6) or $p \equiv 2$ (mod 6). For doing this, we will be using a published result of this author in The Mathematics Student, a periodical of the Indian Mathematical Society.
LA - eng
KW - higher order Diophantine equations; method of infinite ascent; Diophantine equation $-(2^p\cdot A^6) + B^3 = C^2$; higher degree Diophantine equations; method of infinite ascent
UR - http://eudml.org/doc/260799
ER -

References

top
  1. Arif, S.A., Abu Muriefah, F.S., The Diophantine equation x 2 + 3 m = y n , Int. J. Math. Math. Sci., 21, 3, 1998, 619-620. (1998) Zbl0905.11017MR1620327
  2. Arif, S.A., Abu Muriefah, F.S., On the Diophantine equation x 2 + 2 k = y n II, Arab J. Math. Sci., 7, 2, 2001, 67-71. (2001) Zbl1010.11021MR1940290
  3. Abu Muriefah, F.S., Luca, F., Togbé, A., On the Diophantine equation x 2 + 5 a 13 b = y n , Glasg. Math. J., 50, 1, 2008, 175-181. (2008) Zbl1186.11016MR2381741
  4. Bérczes, A., Pink, I., 10.1007/s00013-008-2847-x, Archiv der Mathematik, 91, 6, 2008, 505-517. (2008) Zbl1175.11018MR2465869DOI10.1007/s00013-008-2847-x
  5. Bérczes, A., Pink, I., On the Diophantine equation x 2 + d 2 l + 1 = y n , Glasg. Math. J., 54, 2, 2012, 415-428. (2012) Zbl1266.11059MR2911379
  6. Bugeaud, Y., Muriefah, F.S. Abu, The Diophantine equation x 2 + c = y n : a brief overview, Rev. Colomb. Mat., 40, 1, 2006, 31-37. (2006) MR2286850
  7. Bugeaud, Y., Mignotte, M., Siksek, S., 10.1112/S0010437X05001739, Compositio Mathematica, 142, 2006, 31-62. (2006) Zbl1128.11013MR2196761DOI10.1112/S0010437X05001739
  8. Chao, K., On the Diophantine equation x 2 = y n + 1 , x y 0 , Sci. Sinica, 14, 1965, 457-460. (1965) MR0183684
  9. Cohn, J.H.E., 10.1007/BF01197049, Arch. Math. (Basel), 59, 4, 1992, 341-344. (1992) MR1179459DOI10.1007/BF01197049
  10. Cohn, J.H.E., The Diophantine equation x 2 + C = y n , Acta Arith., 65, 4, 1993, 367-381. (1993) MR1259344
  11. Goins, E., Luca, F., Togbé, A., On the Diophantine equation x 2 + 2 α 5 β 13 γ = y n , ANTS VIII Proceedings: A. J. van der Poorten and A. Stein (eds.), ANTS VIII, Lecture Notes in Computer Science 5011, 2008, 430-442. (2008) Zbl1232.11130MR2467863
  12. Jena, S.K., Method of Infinite Ascent applied on m A 6 + n B 3 = C 2 , Math. Student, 77, 2008, 239-246. (2008) Zbl1217.11035MR2642292
  13. Le, M., 10.1007/BF02882920, Chinese Sci. Bull., 42, 18, 1997, 1515-1517. (1997) Zbl1044.11566MR1641030DOI10.1007/BF02882920
  14. Lebesgue, V.A., Sur l’impossibilité en nombres entiers de l’équation x m = y 2 + 1 , Nouv. Ann. Math., 99, 1850, 178-181, (French). (1850) 
  15. Ljunggren, W., Über einige Arcustangensgleichungen die auf interessante unbestimmte Gleichungen führen, Ark. Mat., 29A, 13, 1943, 1-11, (German). (1943) Zbl0028.10904MR0012090
  16. Luca, F., On the equation x 2 + 2 a · 3 b = y n , Int. J. Math. Math. Sci., 29, 4, 2002, 239-244. (2002) Zbl1085.11021
  17. Luca, F., Togbé, A., 10.1142/S1793042108001791, Int. J. Number Theory, 4, 6, 2008, 973-979. (2008) MR2483306DOI10.1142/S1793042108001791
  18. Mignotte, M., de Weger, B.M.M., On the Diophantine equations x 2 + 74 = y 5 and x 2 + 86 = y 5 , Glasgow Math. J., 38, 1, 1996, 77-85. (1996) MR1373962
  19. Nagell, T., Sur l'impossibilité de quelques équations à deux indéterminées, Norsk. Mat. Forensings Sknifter, 13, 1923, 65-82, (French). (1923) 
  20. Nagell, T., Contributions to the theory of Diophantine equations of the second degree with two unknowns, Nova Acta Soc. Sci. Upsal. Ser (4), 16, 2, 1955, 38-38. (1955) MR0070645
  21. Pink, I., Rábai, Zs., On the Diophantine equation x 2 + 5 k 17 l = y n , Commun. Math., 19, 1, 2011, 1-9. (2011) MR2855388
  22. Saradha, N., Srinivasan, A., 10.1016/S0019-3577(06)80009-1, Indag. Math. (N.S.), 17, 1, 2006, 103-114. (2006) Zbl1110.11012MR2337167DOI10.1016/S0019-3577(06)80009-1
  23. Saradha, N., Srinivasan, A., Solutions of some generalized Ramanujan-Nagell equations via binary quadratic forms, Publ. Math. Debrecen, 71, 3-4, 2007, 349-374. (2007) Zbl1164.11020MR2361718
  24. Zhu, H., Le, M., 10.1016/j.jnt.2010.09.009, J. Number Theory, 131, 3, 2011, 458-469. (2011) Zbl1219.11059MR2739046DOI10.1016/j.jnt.2010.09.009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.