Method of infinite ascent applied on
Communications in Mathematics (2013)
- Volume: 21, Issue: 2, page 173-178
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topJena, Susil Kumar. "Method of infinite ascent applied on $-(2^p\cdot A^6)+B^3=C^2$." Communications in Mathematics 21.2 (2013): 173-178. <http://eudml.org/doc/260799>.
@article{Jena2013,
abstract = {In this paper, the author shows a technique of generating an infinite number of coprime integral solutions for $(A,B,C)$ of the Diophantine equation $-(2^p\cdot A^6) + B^3 = C^2$ for any positive integral values of $p$ when $p \equiv 1$ (mod 6) or $p \equiv 2$ (mod 6). For doing this, we will be using a published result of this author in The Mathematics Student, a periodical of the Indian Mathematical Society.},
author = {Jena, Susil Kumar},
journal = {Communications in Mathematics},
keywords = {higher order Diophantine equations; method of infinite ascent; Diophantine equation $-(2^p\cdot A^6) + B^3 = C^2$; higher degree Diophantine equations; method of infinite ascent},
language = {eng},
number = {2},
pages = {173-178},
publisher = {University of Ostrava},
title = {Method of infinite ascent applied on $-(2^p\cdot A^6)+B^3=C^2$},
url = {http://eudml.org/doc/260799},
volume = {21},
year = {2013},
}
TY - JOUR
AU - Jena, Susil Kumar
TI - Method of infinite ascent applied on $-(2^p\cdot A^6)+B^3=C^2$
JO - Communications in Mathematics
PY - 2013
PB - University of Ostrava
VL - 21
IS - 2
SP - 173
EP - 178
AB - In this paper, the author shows a technique of generating an infinite number of coprime integral solutions for $(A,B,C)$ of the Diophantine equation $-(2^p\cdot A^6) + B^3 = C^2$ for any positive integral values of $p$ when $p \equiv 1$ (mod 6) or $p \equiv 2$ (mod 6). For doing this, we will be using a published result of this author in The Mathematics Student, a periodical of the Indian Mathematical Society.
LA - eng
KW - higher order Diophantine equations; method of infinite ascent; Diophantine equation $-(2^p\cdot A^6) + B^3 = C^2$; higher degree Diophantine equations; method of infinite ascent
UR - http://eudml.org/doc/260799
ER -
References
top- Arif, S.A., Abu Muriefah, F.S., The Diophantine equation , Int. J. Math. Math. Sci., 21, 3, 1998, 619-620. (1998) Zbl0905.11017MR1620327
- Arif, S.A., Abu Muriefah, F.S., On the Diophantine equation II, Arab J. Math. Sci., 7, 2, 2001, 67-71. (2001) Zbl1010.11021MR1940290
- Abu Muriefah, F.S., Luca, F., Togbé, A., On the Diophantine equation , Glasg. Math. J., 50, 1, 2008, 175-181. (2008) Zbl1186.11016MR2381741
- Bérczes, A., Pink, I., 10.1007/s00013-008-2847-x, Archiv der Mathematik, 91, 6, 2008, 505-517. (2008) Zbl1175.11018MR2465869DOI10.1007/s00013-008-2847-x
- Bérczes, A., Pink, I., On the Diophantine equation , Glasg. Math. J., 54, 2, 2012, 415-428. (2012) Zbl1266.11059MR2911379
- Bugeaud, Y., Muriefah, F.S. Abu, The Diophantine equation : a brief overview, Rev. Colomb. Mat., 40, 1, 2006, 31-37. (2006) MR2286850
- Bugeaud, Y., Mignotte, M., Siksek, S., 10.1112/S0010437X05001739, Compositio Mathematica, 142, 2006, 31-62. (2006) Zbl1128.11013MR2196761DOI10.1112/S0010437X05001739
- Chao, K., On the Diophantine equation , Sci. Sinica, 14, 1965, 457-460. (1965) MR0183684
- Cohn, J.H.E., 10.1007/BF01197049, Arch. Math. (Basel), 59, 4, 1992, 341-344. (1992) MR1179459DOI10.1007/BF01197049
- Cohn, J.H.E., The Diophantine equation , Acta Arith., 65, 4, 1993, 367-381. (1993) MR1259344
- Goins, E., Luca, F., Togbé, A., On the Diophantine equation , ANTS VIII Proceedings: A. J. van der Poorten and A. Stein (eds.), ANTS VIII, Lecture Notes in Computer Science 5011, 2008, 430-442. (2008) Zbl1232.11130MR2467863
- Jena, S.K., Method of Infinite Ascent applied on , Math. Student, 77, 2008, 239-246. (2008) Zbl1217.11035MR2642292
- Le, M., 10.1007/BF02882920, Chinese Sci. Bull., 42, 18, 1997, 1515-1517. (1997) Zbl1044.11566MR1641030DOI10.1007/BF02882920
- Lebesgue, V.A., Sur l’impossibilité en nombres entiers de l’équation , Nouv. Ann. Math., 99, 1850, 178-181, (French). (1850)
- Ljunggren, W., Über einige Arcustangensgleichungen die auf interessante unbestimmte Gleichungen führen, Ark. Mat., 29A, 13, 1943, 1-11, (German). (1943) Zbl0028.10904MR0012090
- Luca, F., On the equation , Int. J. Math. Math. Sci., 29, 4, 2002, 239-244. (2002) Zbl1085.11021
- Luca, F., Togbé, A., 10.1142/S1793042108001791, Int. J. Number Theory, 4, 6, 2008, 973-979. (2008) MR2483306DOI10.1142/S1793042108001791
- Mignotte, M., de Weger, B.M.M., On the Diophantine equations and , Glasgow Math. J., 38, 1, 1996, 77-85. (1996) MR1373962
- Nagell, T., Sur l'impossibilité de quelques équations à deux indéterminées, Norsk. Mat. Forensings Sknifter, 13, 1923, 65-82, (French). (1923)
- Nagell, T., Contributions to the theory of Diophantine equations of the second degree with two unknowns, Nova Acta Soc. Sci. Upsal. Ser (4), 16, 2, 1955, 38-38. (1955) MR0070645
- Pink, I., Rábai, Zs., On the Diophantine equation , Commun. Math., 19, 1, 2011, 1-9. (2011) MR2855388
- Saradha, N., Srinivasan, A., 10.1016/S0019-3577(06)80009-1, Indag. Math. (N.S.), 17, 1, 2006, 103-114. (2006) Zbl1110.11012MR2337167DOI10.1016/S0019-3577(06)80009-1
- Saradha, N., Srinivasan, A., Solutions of some generalized Ramanujan-Nagell equations via binary quadratic forms, Publ. Math. Debrecen, 71, 3-4, 2007, 349-374. (2007) Zbl1164.11020MR2361718
- Zhu, H., Le, M., 10.1016/j.jnt.2010.09.009, J. Number Theory, 131, 3, 2011, 458-469. (2011) Zbl1219.11059MR2739046DOI10.1016/j.jnt.2010.09.009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.