How to increase convergence order of the Newton method to ?
Applications of Mathematics (2014)
- Volume: 59, Issue: 1, page 15-24
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKhattri, Sanjay Kumar. "How to increase convergence order of the Newton method to $2\times m$?." Applications of Mathematics 59.1 (2014): 15-24. <http://eudml.org/doc/260804>.
@article{Khattri2014,
abstract = {We present a simple and effective scheme for forming iterative methods of various convergence orders. In this scheme, methods of various convergence orders, such as four, six, eight and ten, are formed through a modest modification of the classical Newton method. Since the scheme considered is a simple modification of the Newton method, it can be easily implemented in existing software packages, which is also suggested by the presented pseudocodes. Finally some problems are solved, to very high precision, through the proposed scheme. Numerical work suggests that the presented scheme requires less number of function evaluations for convergence and it may be suitable in high precision computing.},
author = {Khattri, Sanjay Kumar},
journal = {Applications of Mathematics},
keywords = {iterative method; fourth order convergent method; eighth order convergent method; quadrature; Newton method; convergence; nonlinear equation; optimal choice; iterative method; fourth order convergent method; eighth order convergent method; quadrature; Newton method; nonlinear equation; optimal choice; numerical examples},
language = {eng},
number = {1},
pages = {15-24},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {How to increase convergence order of the Newton method to $2\times m$?},
url = {http://eudml.org/doc/260804},
volume = {59},
year = {2014},
}
TY - JOUR
AU - Khattri, Sanjay Kumar
TI - How to increase convergence order of the Newton method to $2\times m$?
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 1
SP - 15
EP - 24
AB - We present a simple and effective scheme for forming iterative methods of various convergence orders. In this scheme, methods of various convergence orders, such as four, six, eight and ten, are formed through a modest modification of the classical Newton method. Since the scheme considered is a simple modification of the Newton method, it can be easily implemented in existing software packages, which is also suggested by the presented pseudocodes. Finally some problems are solved, to very high precision, through the proposed scheme. Numerical work suggests that the presented scheme requires less number of function evaluations for convergence and it may be suitable in high precision computing.
LA - eng
KW - iterative method; fourth order convergent method; eighth order convergent method; quadrature; Newton method; convergence; nonlinear equation; optimal choice; iterative method; fourth order convergent method; eighth order convergent method; quadrature; Newton method; nonlinear equation; optimal choice; numerical examples
UR - http://eudml.org/doc/260804
ER -
References
top- Argyros, I. K., Chen, D., Qian, Q., 10.1016/0377-0427(94)90093-0, J. Comput. Appl. Math. 51 (1994), 103-106. (1994) Zbl0809.65054MR1286420DOI10.1016/0377-0427(94)90093-0
- Chun, C., 10.1007/s00211-006-0025-2, Numer. Math. 104 (2006), 297-315. (2006) Zbl1126.65042MR2244355DOI10.1007/s00211-006-0025-2
- Chun, C., 10.1016/j.camwa.2007.01.007, Comput. Math. Appl. 53 (2007), 972-976. (2007) Zbl1141.65030MR2333340DOI10.1016/j.camwa.2007.01.007
- Chun, C., 10.1016/j.amc.2007.04.105, Appl. Math. Comput. 195 (2008), 454-459. (2008) Zbl1173.65031MR2381227DOI10.1016/j.amc.2007.04.105
- Chun, C., Ham, Y., 10.1016/j.amc.2007.03.074, Appl. Math. Comput. 193 (2007), 389-394. (2007) Zbl1193.65055MR2385796DOI10.1016/j.amc.2007.03.074
- Chun, C., Ham, Y., 10.1016/j.amc.2007.08.003, Appl. Math. Comput. 197 (2008), 654-658. (2008) Zbl1137.65028MR2400687DOI10.1016/j.amc.2007.08.003
- Chun, C., Ham, Y., 10.1016/j.amc.2006.11.113, Appl. Math. Comput. 189 (2007), 610-614. (2007) Zbl1122.65330MR2330239DOI10.1016/j.amc.2006.11.113
- Frontini, M., Sormani, E., 10.1016/S0096-3003(02)00238-2, Appl. Math. Comput. 140 (2003), 419-426. (2003) Zbl1037.65051MR1953913DOI10.1016/S0096-3003(02)00238-2
- Homeier, H. H. H., 10.1016/j.cam.2004.07.027, J. Comput. Appl. Math. 176 (2005), 425-432. (2005) Zbl1063.65037MR2116403DOI10.1016/j.cam.2004.07.027
- Khattri, S. K., 10.1007/s11786-011-0064-7, Math. Comput. Sci. 5 (2011), 237-243. (2011) Zbl1256.65041MR2864067DOI10.1007/s11786-011-0064-7
- Khattri, S. K., Newton-Krylov algorithm with adaptive error correction for the Poisson-Boltzmann equation, MATCH Commun. Math. Comput. Chem. 56 (2006), 197-208. (2006) Zbl1119.65334MR2312481
- Khattri, S. K., Altered Jacobian Newton iterative method for nonlinear elliptic problems, IAENG, Int. J. Appl. Math. 38 (2008), 108-112. (2008) Zbl1229.65199MR2442461
- Khattri, S. K., 10.1524/anly.2011.1098, Analysis, München 31 (2011), 305-312. (2011) Zbl1278.65061MR2877041DOI10.1524/anly.2011.1098
- Khattri, S. K., Argyros, I. K., 10.1016/j.amc.2010.12.021, Appl. Math. Comput. 217 (2011), 5500-5507. (2011) Zbl1229.65080MR2770167DOI10.1016/j.amc.2010.12.021
- Khattri, S. K., Log, T., 10.1007/s00607-010-0135-7, Computing 92 (2011), 169-179. (2011) Zbl1232.65073MR2794922DOI10.1007/s00607-010-0135-7
- Khattri, S. K., Log, T., 10.1080/00207160.2010.520705, Int. J. Comput. Math. 88 (2011), 1509-1518. (2011) Zbl1214.65023MR2787907DOI10.1080/00207160.2010.520705
- Khattri, S. K., Noor, M. A., Al-Said, E., 10.1016/j.aml.2011.02.009, Appl. Math. Lett. 24 (2011), 1295-1300. (2011) Zbl1225.65053MR2793620DOI10.1016/j.aml.2011.02.009
- King, R. F., 10.1137/0710072, SIAM J. Numer. Anal. 10 (1973), 876-879. (1973) Zbl0266.65040MR0343585DOI10.1137/0710072
- Kou, J., Li, Y., Wang, X., 10.1016/j.amc.2006.01.076, Appl. Math. Comput. 181 (2006), 1106-1111. (2006) Zbl1172.65021MR2269989DOI10.1016/j.amc.2006.01.076
- Kou, J., Li, Y., Wang, X., 10.1016/j.amc.2006.05.189, Appl. Math. Comput. 184 (2007), 880-885. (2007) Zbl1114.65046MR2294954DOI10.1016/j.amc.2006.05.189
- Kou, J., Li, Y., Wang, X., 10.1016/j.amc.2006.05.181, Appl. Math. Comput. 184 (2007), 471-475. (2007) Zbl1114.65045MR2294862DOI10.1016/j.amc.2006.05.181
- Ostrowski, A. M., Solution of Equations and Systems of Equation. Pure and Applied Mathematics 9, Academic Press New York (1960). (1960) MR0127525
- "{O}zban, A. Y., 10.1016/S0893-9659(04)90104-8, Appl. Math. Lett. 17 (2004), 677-682. (2004) MR2064180DOI10.1016/S0893-9659(04)90104-8
- Potra, F.-A., Pták, V., Nondiscrete Induction and Iterative Processes. Research Notes in Mathematics 103, Pitman Advanced Publishing Program Boston (1984). (1984) MR0754338
- Ren, H., Wu, Q., Bi, W., 10.1007/s11075-009-9302-3, Numer. Algorithms 52 (2009), 585-603. (2009) Zbl1187.65052MR2563716DOI10.1007/s11075-009-9302-3
- Sen, S. K., Agarwal, R. P., Khattri, S. K., Computational pitfalls of high-order methods for nonlinear equations, J. Appl. Math. Inform. 30 (2012), 395-411. (2012) Zbl1244.65069MR2977086
- Sharma, J. R., Goyal, R. K., 10.1080/00207160500113306, Int. J. Comput. Math. 83 (2006), 101-106. (2006) Zbl1094.65048MR2196090DOI10.1080/00207160500113306
- Sharma, J. R., Guha, R. K., 10.1016/j.amc.2007.01.009, Appl. Math. Comput. 190 (2007), 111-115. (2007) Zbl1126.65046MR2335433DOI10.1016/j.amc.2007.01.009
- Soleymani, F., Khattri, S. K., Vanani, S. K., 10.1016/j.aml.2011.10.030, Appl. Math. Lett. 25 (2012), 847-853. (2012) Zbl1239.65030MR2888084DOI10.1016/j.aml.2011.10.030
- Traub, J. F., Iterative Methods for the Solution of Equations. 2nd ed, Chelsea Publishing Company New York (1982). (1982) Zbl0472.65040
- Weerakoon, S., Fernando, T. G. I., 10.1016/S0893-9659(00)00100-2, Appl. Math. Lett. 13 (2000), 87-93. (2000) Zbl0973.65037MR1791767DOI10.1016/S0893-9659(00)00100-2
- ARPREC. C++/Fortran-90 arbitrary precision package. Available at http://crd.lbl.gov/dhbailey/mpdist/, .
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.