How to increase convergence order of the Newton method to 2 × m ?

Sanjay Kumar Khattri

Applications of Mathematics (2014)

  • Volume: 59, Issue: 1, page 15-24
  • ISSN: 0862-7940

Abstract

top
We present a simple and effective scheme for forming iterative methods of various convergence orders. In this scheme, methods of various convergence orders, such as four, six, eight and ten, are formed through a modest modification of the classical Newton method. Since the scheme considered is a simple modification of the Newton method, it can be easily implemented in existing software packages, which is also suggested by the presented pseudocodes. Finally some problems are solved, to very high precision, through the proposed scheme. Numerical work suggests that the presented scheme requires less number of function evaluations for convergence and it may be suitable in high precision computing.

How to cite

top

Khattri, Sanjay Kumar. "How to increase convergence order of the Newton method to $2\times m$?." Applications of Mathematics 59.1 (2014): 15-24. <http://eudml.org/doc/260804>.

@article{Khattri2014,
abstract = {We present a simple and effective scheme for forming iterative methods of various convergence orders. In this scheme, methods of various convergence orders, such as four, six, eight and ten, are formed through a modest modification of the classical Newton method. Since the scheme considered is a simple modification of the Newton method, it can be easily implemented in existing software packages, which is also suggested by the presented pseudocodes. Finally some problems are solved, to very high precision, through the proposed scheme. Numerical work suggests that the presented scheme requires less number of function evaluations for convergence and it may be suitable in high precision computing.},
author = {Khattri, Sanjay Kumar},
journal = {Applications of Mathematics},
keywords = {iterative method; fourth order convergent method; eighth order convergent method; quadrature; Newton method; convergence; nonlinear equation; optimal choice; iterative method; fourth order convergent method; eighth order convergent method; quadrature; Newton method; nonlinear equation; optimal choice; numerical examples},
language = {eng},
number = {1},
pages = {15-24},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {How to increase convergence order of the Newton method to $2\times m$?},
url = {http://eudml.org/doc/260804},
volume = {59},
year = {2014},
}

TY - JOUR
AU - Khattri, Sanjay Kumar
TI - How to increase convergence order of the Newton method to $2\times m$?
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 1
SP - 15
EP - 24
AB - We present a simple and effective scheme for forming iterative methods of various convergence orders. In this scheme, methods of various convergence orders, such as four, six, eight and ten, are formed through a modest modification of the classical Newton method. Since the scheme considered is a simple modification of the Newton method, it can be easily implemented in existing software packages, which is also suggested by the presented pseudocodes. Finally some problems are solved, to very high precision, through the proposed scheme. Numerical work suggests that the presented scheme requires less number of function evaluations for convergence and it may be suitable in high precision computing.
LA - eng
KW - iterative method; fourth order convergent method; eighth order convergent method; quadrature; Newton method; convergence; nonlinear equation; optimal choice; iterative method; fourth order convergent method; eighth order convergent method; quadrature; Newton method; nonlinear equation; optimal choice; numerical examples
UR - http://eudml.org/doc/260804
ER -

References

top
  1. Argyros, I. K., Chen, D., Qian, Q., 10.1016/0377-0427(94)90093-0, J. Comput. Appl. Math. 51 (1994), 103-106. (1994) Zbl0809.65054MR1286420DOI10.1016/0377-0427(94)90093-0
  2. Chun, C., 10.1007/s00211-006-0025-2, Numer. Math. 104 (2006), 297-315. (2006) Zbl1126.65042MR2244355DOI10.1007/s00211-006-0025-2
  3. Chun, C., 10.1016/j.camwa.2007.01.007, Comput. Math. Appl. 53 (2007), 972-976. (2007) Zbl1141.65030MR2333340DOI10.1016/j.camwa.2007.01.007
  4. Chun, C., 10.1016/j.amc.2007.04.105, Appl. Math. Comput. 195 (2008), 454-459. (2008) Zbl1173.65031MR2381227DOI10.1016/j.amc.2007.04.105
  5. Chun, C., Ham, Y., 10.1016/j.amc.2007.03.074, Appl. Math. Comput. 193 (2007), 389-394. (2007) Zbl1193.65055MR2385796DOI10.1016/j.amc.2007.03.074
  6. Chun, C., Ham, Y., 10.1016/j.amc.2007.08.003, Appl. Math. Comput. 197 (2008), 654-658. (2008) Zbl1137.65028MR2400687DOI10.1016/j.amc.2007.08.003
  7. Chun, C., Ham, Y., 10.1016/j.amc.2006.11.113, Appl. Math. Comput. 189 (2007), 610-614. (2007) Zbl1122.65330MR2330239DOI10.1016/j.amc.2006.11.113
  8. Frontini, M., Sormani, E., 10.1016/S0096-3003(02)00238-2, Appl. Math. Comput. 140 (2003), 419-426. (2003) Zbl1037.65051MR1953913DOI10.1016/S0096-3003(02)00238-2
  9. Homeier, H. H. H., 10.1016/j.cam.2004.07.027, J. Comput. Appl. Math. 176 (2005), 425-432. (2005) Zbl1063.65037MR2116403DOI10.1016/j.cam.2004.07.027
  10. Khattri, S. K., 10.1007/s11786-011-0064-7, Math. Comput. Sci. 5 (2011), 237-243. (2011) Zbl1256.65041MR2864067DOI10.1007/s11786-011-0064-7
  11. Khattri, S. K., Newton-Krylov algorithm with adaptive error correction for the Poisson-Boltzmann equation, MATCH Commun. Math. Comput. Chem. 56 (2006), 197-208. (2006) Zbl1119.65334MR2312481
  12. Khattri, S. K., Altered Jacobian Newton iterative method for nonlinear elliptic problems, IAENG, Int. J. Appl. Math. 38 (2008), 108-112. (2008) Zbl1229.65199MR2442461
  13. Khattri, S. K., 10.1524/anly.2011.1098, Analysis, München 31 (2011), 305-312. (2011) Zbl1278.65061MR2877041DOI10.1524/anly.2011.1098
  14. Khattri, S. K., Argyros, I. K., 10.1016/j.amc.2010.12.021, Appl. Math. Comput. 217 (2011), 5500-5507. (2011) Zbl1229.65080MR2770167DOI10.1016/j.amc.2010.12.021
  15. Khattri, S. K., Log, T., 10.1007/s00607-010-0135-7, Computing 92 (2011), 169-179. (2011) Zbl1232.65073MR2794922DOI10.1007/s00607-010-0135-7
  16. Khattri, S. K., Log, T., 10.1080/00207160.2010.520705, Int. J. Comput. Math. 88 (2011), 1509-1518. (2011) Zbl1214.65023MR2787907DOI10.1080/00207160.2010.520705
  17. Khattri, S. K., Noor, M. A., Al-Said, E., 10.1016/j.aml.2011.02.009, Appl. Math. Lett. 24 (2011), 1295-1300. (2011) Zbl1225.65053MR2793620DOI10.1016/j.aml.2011.02.009
  18. King, R. F., 10.1137/0710072, SIAM J. Numer. Anal. 10 (1973), 876-879. (1973) Zbl0266.65040MR0343585DOI10.1137/0710072
  19. Kou, J., Li, Y., Wang, X., 10.1016/j.amc.2006.01.076, Appl. Math. Comput. 181 (2006), 1106-1111. (2006) Zbl1172.65021MR2269989DOI10.1016/j.amc.2006.01.076
  20. Kou, J., Li, Y., Wang, X., 10.1016/j.amc.2006.05.189, Appl. Math. Comput. 184 (2007), 880-885. (2007) Zbl1114.65046MR2294954DOI10.1016/j.amc.2006.05.189
  21. Kou, J., Li, Y., Wang, X., 10.1016/j.amc.2006.05.181, Appl. Math. Comput. 184 (2007), 471-475. (2007) Zbl1114.65045MR2294862DOI10.1016/j.amc.2006.05.181
  22. Ostrowski, A. M., Solution of Equations and Systems of Equation. Pure and Applied Mathematics 9, Academic Press New York (1960). (1960) MR0127525
  23. &quot;{O}zban, A. Y., 10.1016/S0893-9659(04)90104-8, Appl. Math. Lett. 17 (2004), 677-682. (2004) MR2064180DOI10.1016/S0893-9659(04)90104-8
  24. Potra, F.-A., Pták, V., Nondiscrete Induction and Iterative Processes. Research Notes in Mathematics 103, Pitman Advanced Publishing Program Boston (1984). (1984) MR0754338
  25. Ren, H., Wu, Q., Bi, W., 10.1007/s11075-009-9302-3, Numer. Algorithms 52 (2009), 585-603. (2009) Zbl1187.65052MR2563716DOI10.1007/s11075-009-9302-3
  26. Sen, S. K., Agarwal, R. P., Khattri, S. K., Computational pitfalls of high-order methods for nonlinear equations, J. Appl. Math. Inform. 30 (2012), 395-411. (2012) Zbl1244.65069MR2977086
  27. Sharma, J. R., Goyal, R. K., 10.1080/00207160500113306, Int. J. Comput. Math. 83 (2006), 101-106. (2006) Zbl1094.65048MR2196090DOI10.1080/00207160500113306
  28. Sharma, J. R., Guha, R. K., 10.1016/j.amc.2007.01.009, Appl. Math. Comput. 190 (2007), 111-115. (2007) Zbl1126.65046MR2335433DOI10.1016/j.amc.2007.01.009
  29. Soleymani, F., Khattri, S. K., Vanani, S. K., 10.1016/j.aml.2011.10.030, Appl. Math. Lett. 25 (2012), 847-853. (2012) Zbl1239.65030MR2888084DOI10.1016/j.aml.2011.10.030
  30. Traub, J. F., Iterative Methods for the Solution of Equations. 2nd ed, Chelsea Publishing Company New York (1982). (1982) Zbl0472.65040
  31. Weerakoon, S., Fernando, T. G. I., 10.1016/S0893-9659(00)00100-2, Appl. Math. Lett. 13 (2000), 87-93. (2000) Zbl0973.65037MR1791767DOI10.1016/S0893-9659(00)00100-2
  32. ARPREC. C++/Fortran-90 arbitrary precision package. Available at http://crd.lbl.gov/dhbailey/mpdist/, . 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.