-Depth-nearest Neighbour Method and its Performance on Skew-normal Distributons
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2013)
- Volume: 52, Issue: 2, page 121-129
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topVencálek, Ondřej. "$k$-Depth-nearest Neighbour Method and its Performance on Skew-normal Distributons." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 52.2 (2013): 121-129. <http://eudml.org/doc/260822>.
@article{Vencálek2013,
abstract = {In the present paper we investigate performance of the $k$-depth-nearest classifier. This classifier, proposed recently by Vencálek, uses the concept of data depth to improve the classification method known as the $k$-nearest neighbour. Simulation study which is presented here deals with the two-class classification problem in which the considered distributions belong to the family of skewed normal distributions.},
author = {Vencálek, Ondřej},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {data depth; classification; k-nearest neighbour; skewed normal distribution; data depth; classification; -nearest neighbour; skewed normal distribution},
language = {eng},
number = {2},
pages = {121-129},
publisher = {Palacký University Olomouc},
title = {$k$-Depth-nearest Neighbour Method and its Performance on Skew-normal Distributons},
url = {http://eudml.org/doc/260822},
volume = {52},
year = {2013},
}
TY - JOUR
AU - Vencálek, Ondřej
TI - $k$-Depth-nearest Neighbour Method and its Performance on Skew-normal Distributons
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2013
PB - Palacký University Olomouc
VL - 52
IS - 2
SP - 121
EP - 129
AB - In the present paper we investigate performance of the $k$-depth-nearest classifier. This classifier, proposed recently by Vencálek, uses the concept of data depth to improve the classification method known as the $k$-nearest neighbour. Simulation study which is presented here deals with the two-class classification problem in which the considered distributions belong to the family of skewed normal distributions.
LA - eng
KW - data depth; classification; k-nearest neighbour; skewed normal distribution; data depth; classification; -nearest neighbour; skewed normal distribution
UR - http://eudml.org/doc/260822
ER -
References
top- Azzalini, A., Della Valle, A., 10.1093/biomet/83.4.715, Biometrika 83, 4 (1996), 715–726. (1996) MR1440039DOI10.1093/biomet/83.4.715
- Azzalini, A. R, package sn: The skew-normal and skew-t distributions (version 0.4-6), http://azzalini.stat.unipd.it/SN, 2006. (2006)
- Hlubinka, D., Výpravy do hlubin dat, In: Antoch, J., Dohnal, G. (eds.): Sborník prací 15. letní školy JČMF ROBUST 2008, JČMF, Praha, 2009, 97–130, (in czech). (2009)
- Hubert, M., van der Veeken, S., Fast and robust classifiers adjusted for skewness, In: Lechevallier, Y., Saporta, G. (eds.): COMPSTAT 2010: proceedings in computational statistics: 19th symposium held in Paris, France Springer, Heidelberg, 2010, 1135–1142. (2010)
- Li, J., Cuesta-Albertos, J. A., Liu, R. Y., 10.1080/01621459.2012.688462, Journal of the American Statistical Association 104, 498 (2012), 737–753. (2012) Zbl1261.62058MR2980081DOI10.1080/01621459.2012.688462
- Paindaveine, D., Van Bever, G., Nonparametrically consistent depth-based classifiers, arXiv preprint arXiv:1204.2996, 2012. (2012)
- Vencálek, O., Concept of Data Depth and Its Applications, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 50, 2 (2011), 111–119. (2011) Zbl1244.62048MR2920713
- Vencálek, O., Weighted data depth and depth based classification, PhD Thesis, MFF UK, Praha, 2011. (2011)
- Vencálek, O., New depth-based modification of the -nearest neighbour method, Informační bulletin České statistické společnosti, (2013), (to appear). (2013)
- Zuo, Y., Serfling, R., 10.1214/aos/1016218226, Annals of Statistics 28 (2000), 461–482. (2000) MR1790005DOI10.1214/aos/1016218226
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.