A depth-based modification of the k-nearest neighbour method
Ondřej Vencálek; Daniel Hlubinka
Kybernetika (2021)
- Issue: 1, page 15-37
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topVencálek, Ondřej, and Hlubinka, Daniel. "A depth-based modification of the k-nearest neighbour method." Kybernetika (2021): 15-37. <http://eudml.org/doc/297544>.
@article{Vencálek2021,
abstract = {We propose a new nonparametric procedure to solve the problem of classifying objects represented by $d$-dimensional vectors into $K \ge 2$ groups. The newly proposed classifier was inspired by the $k$ nearest neighbour (kNN) method. It is based on the idea of a depth-based distributional neighbourhood and is called $k$ nearest depth neighbours (kNDN) classifier. The kNDN classifier has several desirable properties: in contrast to the classical kNN, it can utilize global properties of the considered distributions (symmetry). In contrast to the maximal depth classifier and related classifiers, it does not have problems with classification when the considered distributions differ in dispersion or have unequal priors. The kNDN classifier is compared to several depth-based classifiers as well as the classical kNN method in a simulation study. According to the average misclassification rates, it is comparable to the best current depth-based classifiers.},
author = {Vencálek, Ondřej, Hlubinka, Daniel},
journal = {Kybernetika},
keywords = {Bayes classifier; data depth; k nearest depth neighbours; nonparametric},
language = {eng},
number = {1},
pages = {15-37},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A depth-based modification of the k-nearest neighbour method},
url = {http://eudml.org/doc/297544},
year = {2021},
}
TY - JOUR
AU - Vencálek, Ondřej
AU - Hlubinka, Daniel
TI - A depth-based modification of the k-nearest neighbour method
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
IS - 1
SP - 15
EP - 37
AB - We propose a new nonparametric procedure to solve the problem of classifying objects represented by $d$-dimensional vectors into $K \ge 2$ groups. The newly proposed classifier was inspired by the $k$ nearest neighbour (kNN) method. It is based on the idea of a depth-based distributional neighbourhood and is called $k$ nearest depth neighbours (kNDN) classifier. The kNDN classifier has several desirable properties: in contrast to the classical kNN, it can utilize global properties of the considered distributions (symmetry). In contrast to the maximal depth classifier and related classifiers, it does not have problems with classification when the considered distributions differ in dispersion or have unequal priors. The kNDN classifier is compared to several depth-based classifiers as well as the classical kNN method in a simulation study. According to the average misclassification rates, it is comparable to the best current depth-based classifiers.
LA - eng
KW - Bayes classifier; data depth; k nearest depth neighbours; nonparametric
UR - http://eudml.org/doc/297544
ER -
References
top- Agostinelli, C., Romanazzi, M., , J. Statist. Plann. Inference 141 (2011), 817-830. MR2732952DOI
- Barber, C. B., Dobkin, D. P., Huhdanpaa, H., , ACM Trans. Math. Software (TOMS) 22 (1996), 4, 469-483. MR1428265DOI
- Christmann, A., Rousseeuw, P. J., , Comput. Statist. Data Analysis 37 (2001), 65-75. MR1862480DOI
- Cox, L. H., Johnson, M. M., Kafadar, K., , In: ASA Proc Stat. Comp Section 1982, pp. 55-56. DOI
- Dutta, S., Ghosh, A. K., On classification based on Lp depth with an adaptive choice of p., Preprint, 2011.
- Dutta, S., Ghosh, A. K., , Ann. Inst.Statist. Math. 64 (2012), 3, 657-676. MR2880873DOI
- Dutta, S., Ghosh, A. K., Chaudhuri, P., , Bernoulli 17 (2011), 4, 1420-1434. Zbl1229.62063MR2854779DOI
- Fix, E., Hodges, J. L., Discriminatory Analysis: Nonparametric Discrimination: Consistency Properties., Technical Report 4, Randolph Field, Texas: USAF School of Aviation Medicine, 1951.
- Fraiman, R., Liu, R. Y., Meloche, J., 10.1214/lnms/1215454155, Lecture Notes-Monograph Series 1997, pp. 415-430. MR1833602DOI10.1214/lnms/1215454155
- Ghosh, A. K., Chaudhuri, P., , Scand. J. Statist. 32 (2005), 327-350. MR2188677DOI
- Ghosh, A. K., Chaudhuri, P., , Bernoulli 11 (2005), 1, 1-27. MR2121452DOI
- Habel, K., Grasman, R., Gramacy, R. B., Mozharovskyi, P., Sterratt, D. C., Geometry: Mesh Generation and Surface Tessellation. R package version 0.4.5.
- Hlubinka, D., Kotík, L., Vencálek, O., Weighted data depth., Kybernetika 46 (2010), 1, 125-148. MR2666899
- Hubert, M., Veeken, S. van der, Fast and robust classifiers adjusted for skewness., In: COMPSTAT 2010: Proceedings in Computational Statistics: 19th Symposium held in Paris 2010 (Y. Lechevallier and G. Saporta, eds.), Springer, Heidelberg 2010, pp. 1135-1142.
- Jörnsten, R., 10.1016/j.jmva.2004.02.013, J. Multivar. Anal. 90 (2004), 67-89. MR2064937DOI10.1016/j.jmva.2004.02.013
- Kotík, L., Hlubinka, D., , J. Multivar. Anal. 157 (2017), 53-69. MR3641736DOI
- Kosiorowski, D., Zawadzki, Z., DepthProc An R Package for Robust., Exploration of Multidimensional Economic Phenomena, 2020.
- Lange, T., Mosler, K., Mozharovskyi, P., 10.1007/s00362-012-0488-4, Statist. Papers 55 (2014), 1, 49-69. MR3152767DOI10.1007/s00362-012-0488-4
- Li, J., Cuesta-Albertos, J. A., Liu, R. Y., , J. Amer. Statist. Assoc. 107 (2012), 498, 737-753. MR2980081DOI
- Liu, R. Y., , Ann. Statist. 18 (1990), 1, 405-414. MR1041400DOI
- Liu, R. Y., Parelius, J. M., Singh, K., , Ann. Statist. 27 (1999), 783-858. MR1724033DOI
- Mardia, K., Kent, J., Bibby, J., Multivariate Analysis., Academic Press, 1979. MR0560319
- Paindaveine, D., Bever, G. Van, 10.1080/01621459.2013.813390, J. Amer. Statist. Assoc. 105 (2013), 1105-1119. MR3174687DOI10.1080/01621459.2013.813390
- Paindaveine, D., Bever, G. Van, , Bernoulli 21 (2015), 1, 62-82. MR3322313DOI
- Pokotylo, O., Mozharovskyi, P., Dyckerhoff, R., 10.18637/jss.v091.i05, J. Statist. Software 91 (2019), 5, 1-46. DOI10.18637/jss.v091.i05
- Serfling, R., Depth functions in nonparametric multivariate inference., In: Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications (R. Y. Liu, R. Serfling, and D. L. Souvaine, eds.), American Mathematical Society, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 7, New York 2006, pp. 1-16. MR2343109
- Vencalek, O., -Depth-nearest neighbour method and its performance on skew-normal distributons., Acta Univ. Palacki Olomouc., Fac. Rer. Nat., Mathematica 52 (2013), 2, pp. 121-129. MR3202385
- Yeh, I. C., Yang, K. J., Ting, T. M., , Expert Systems Appl. 36 (2009), 5866-5871. DOI
- Zakai, A., Ritov, Y., Consistency and localizability., J. Machine Learning Res. 10 (2009), 827-856. MR2505136
- Zuo, Y., Serfling, R., , Ann. Statist. 28 (2000), 461-482. MR1790005DOI
- Zuo, Y., Serfling, R., , Ann. Statist. 28 (2000) 2, 483-499. MR1790006DOI
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.