A posteriori error estimators for nonconforming finite element methods

E. Dari; R. Duran; C. Padra; V. Vampa

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1996)

  • Volume: 30, Issue: 4, page 385-400
  • ISSN: 0764-583X

How to cite

top

Dari, E., et al. "A posteriori error estimators for nonconforming finite element methods." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.4 (1996): 385-400. <http://eudml.org/doc/193808>.

@article{Dari1996,
author = {Dari, E., Duran, R., Padra, C., Vampa, V.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {error estimators; nonconforming finite element; second-order elliptic problems; numerical experiments; adaptive refinement},
language = {eng},
number = {4},
pages = {385-400},
publisher = {Dunod},
title = {A posteriori error estimators for nonconforming finite element methods},
url = {http://eudml.org/doc/193808},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Dari, E.
AU - Duran, R.
AU - Padra, C.
AU - Vampa, V.
TI - A posteriori error estimators for nonconforming finite element methods
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 4
SP - 385
EP - 400
LA - eng
KW - error estimators; nonconforming finite element; second-order elliptic problems; numerical experiments; adaptive refinement
UR - http://eudml.org/doc/193808
ER -

References

top
  1. [1] D. N. ARNOLD, F. BREZZI, Mixed and nonconforming finite element method simplementation, postprocessing and error estimates, R.A.I.R.O., Modél. Math. Anal Numer. 19, 1985, pp. 7-32. Zbl0567.65078MR813687
  2. [2] D. N. ARNOLD, R. S. FALK, A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Numer. Anal. 26, 1989, pp. 1276-1290. Zbl0696.73040MR1025088
  3. [3] I. BABUŠKA, R. DURÁN, R. RODRÍGUEZ, Analysis of the efficiency of an a posteriori error estimator for liner triangular finite elements, Siam J. Numer. Anal. 29, 1992, pp. 947-964. Zbl0759.65069MR1173179
  4. [4] I. BABUŠKA, A. MILLER, A feedback finite element method with a posteriori error estimation. Part I : The finite element method and some basic properties of the a posteriori error estimator, Comp. Meth. Appl. Mech. Eng. 61, 1987, pp. 1-40. Zbl0593.65064MR880421
  5. [5] I. BABUŠKA, W. C. RHEINBOLDT, A posteriori error estimators in the finite element method, Inter. J. Numer. Meth. Eng. 12, 1978, pp. 1587-1615. Zbl0396.65068
  6. [6] R. E. BANK, A. WEISER, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44, 1985,, pp. 283-301. Zbl0569.65079MR777265
  7. [7] P. G. CIARLET, The finite element method for elliptic problems, North Holland, 1978. Zbl0383.65058MR520174
  8. [8] D. F. GRIFFITHS, A. R. MITCHELL, Nonconforming elements, The mathematical basis of finite element methods, D. F. Griffiths, ed., Clarendon Press, Oxford, 1984, pp. 41-69. MR807009
  9. [9] L. D. MARINI, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method, SIAM J. Numer. Anal. 22, 1985, pp. 493-496. Zbl0573.65082MR787572
  10. [10] M. C. RIVARA, Mesh refinement processes based on the generalized bisection of simplices, SIAM J. Numer. Anal. 21, 1984, pp.604-613 Zbl0574.65133MR744176
  11. [11] L. R. SCOTT, S. SHANG, Finite element interpolation of non-smooth functions satisfying boundary conditions, Math. Comp. 54, 1990, pp. 483-493. Zbl0696.65007MR1011446
  12. [12] R. VERFÜRTH, A posteriori error estimators for the Stokes equations, Numer.Math. 55, 1989, pp. 309-325. Zbl0674.65092MR993474

Citations in EuDML Documents

top
  1. Carsten Carstensen, Quasi-interpolation and a posteriori error analysis in finite element methods
  2. Reiner Vanselow, New results concerning the DWR method for some nonconforming FEM
  3. Friedhelm Schieweck, A posteriori error estimates with post-processing for nonconforming finite elements
  4. Ivana Šebestová, A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation
  5. Friedhelm Schieweck, Error Estimates with Post-Processing for Nonconforming Finite Elements
  6. Serge Nicaise, Nadir Soualem, A posteriori error estimates for a nonconforming finite element discretization of the heat equation
  7. Serge Nicaise, Nadir Soualem, error estimates for a nonconforming finite element discretization of the heat equation
  8. Linda El Alaoui, Alexandre Ern, Residual and hierarchical a posteriori error estimates for nonconforming mixed finite element methods
  9. Linda El Alaoui, Alexandre Ern, Residual and hierarchical error estimates for nonconforming mixed finite element methods

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.