A posteriori error estimators for nonconforming finite element methods
E. Dari; R. Duran; C. Padra; V. Vampa
- Volume: 30, Issue: 4, page 385-400
- ISSN: 0764-583X
Access Full Article
topHow to cite
topDari, E., et al. "A posteriori error estimators for nonconforming finite element methods." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.4 (1996): 385-400. <http://eudml.org/doc/193808>.
@article{Dari1996,
author = {Dari, E., Duran, R., Padra, C., Vampa, V.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {error estimators; nonconforming finite element; second-order elliptic problems; numerical experiments; adaptive refinement},
language = {eng},
number = {4},
pages = {385-400},
publisher = {Dunod},
title = {A posteriori error estimators for nonconforming finite element methods},
url = {http://eudml.org/doc/193808},
volume = {30},
year = {1996},
}
TY - JOUR
AU - Dari, E.
AU - Duran, R.
AU - Padra, C.
AU - Vampa, V.
TI - A posteriori error estimators for nonconforming finite element methods
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 4
SP - 385
EP - 400
LA - eng
KW - error estimators; nonconforming finite element; second-order elliptic problems; numerical experiments; adaptive refinement
UR - http://eudml.org/doc/193808
ER -
References
top- [1] D. N. ARNOLD, F. BREZZI, Mixed and nonconforming finite element method simplementation, postprocessing and error estimates, R.A.I.R.O., Modél. Math. Anal Numer. 19, 1985, pp. 7-32. Zbl0567.65078MR813687
- [2] D. N. ARNOLD, R. S. FALK, A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Numer. Anal. 26, 1989, pp. 1276-1290. Zbl0696.73040MR1025088
- [3] I. BABUŠKA, R. DURÁN, R. RODRÍGUEZ, Analysis of the efficiency of an a posteriori error estimator for liner triangular finite elements, Siam J. Numer. Anal. 29, 1992, pp. 947-964. Zbl0759.65069MR1173179
- [4] I. BABUŠKA, A. MILLER, A feedback finite element method with a posteriori error estimation. Part I : The finite element method and some basic properties of the a posteriori error estimator, Comp. Meth. Appl. Mech. Eng. 61, 1987, pp. 1-40. Zbl0593.65064MR880421
- [5] I. BABUŠKA, W. C. RHEINBOLDT, A posteriori error estimators in the finite element method, Inter. J. Numer. Meth. Eng. 12, 1978, pp. 1587-1615. Zbl0396.65068
- [6] R. E. BANK, A. WEISER, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44, 1985,, pp. 283-301. Zbl0569.65079MR777265
- [7] P. G. CIARLET, The finite element method for elliptic problems, North Holland, 1978. Zbl0383.65058MR520174
- [8] D. F. GRIFFITHS, A. R. MITCHELL, Nonconforming elements, The mathematical basis of finite element methods, D. F. Griffiths, ed., Clarendon Press, Oxford, 1984, pp. 41-69. MR807009
- [9] L. D. MARINI, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method, SIAM J. Numer. Anal. 22, 1985, pp. 493-496. Zbl0573.65082MR787572
- [10] M. C. RIVARA, Mesh refinement processes based on the generalized bisection of simplices, SIAM J. Numer. Anal. 21, 1984, pp.604-613 Zbl0574.65133MR744176
- [11] L. R. SCOTT, S. SHANG, Finite element interpolation of non-smooth functions satisfying boundary conditions, Math. Comp. 54, 1990, pp. 483-493. Zbl0696.65007MR1011446
- [12] R. VERFÜRTH, A posteriori error estimators for the Stokes equations, Numer.Math. 55, 1989, pp. 309-325. Zbl0674.65092MR993474
Citations in EuDML Documents
top- Carsten Carstensen, Quasi-interpolation and a posteriori error analysis in finite element methods
- Reiner Vanselow, New results concerning the DWR method for some nonconforming FEM
- Friedhelm Schieweck, A posteriori error estimates with post-processing for nonconforming finite elements
- Friedhelm Schieweck, Error Estimates with Post-Processing for Nonconforming Finite Elements
- Ivana Šebestová, A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation
- Serge Nicaise, Nadir Soualem, A posteriori error estimates for a nonconforming finite element discretization of the heat equation
- Serge Nicaise, Nadir Soualem, error estimates for a nonconforming finite element discretization of the heat equation
- Linda El Alaoui, Alexandre Ern, Residual and hierarchical a posteriori error estimates for nonconforming mixed finite element methods
- Linda El Alaoui, Alexandre Ern, Residual and hierarchical error estimates for nonconforming mixed finite element methods
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.