Necessary conditions for the -convergence of single and double trigonometric series
Xhevat Z. Krasniqi; Péter Kórus; Ferenc Móricz
Mathematica Bohemica (2014)
- Volume: 139, Issue: 1, page 75-88
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topKrasniqi, Xhevat Z., Kórus, Péter, and Móricz, Ferenc. "Necessary conditions for the $L^{p}$-convergence $(0<p<1)$ of single and double trigonometric series." Mathematica Bohemica 139.1 (2014): 75-88. <http://eudml.org/doc/261093>.
@article{Krasniqi2014,
abstract = {We give necessary conditions in terms of the coefficients for the convergence of a double trigonometric series in the $L^\{p\}$-metric, where $0<p<1$. The results and their proofs have been motivated by the recent papers of A. S. Belov (2008) and F. Móricz (2010). Our basic tools in the proofs are the Hardy-Littlewood inequality for functions in $H^\{p\}$ and the Bernstein-Zygmund inequalities for the derivatives of trigonometric polynomials and their conjugates in the $L^\{p\}$-metric, where $0<p<1$.},
author = {Krasniqi, Xhevat Z., Kórus, Péter, Móricz, Ferenc},
journal = {Mathematica Bohemica},
keywords = {trigonometric series; Hardy-Littlewood inequality for functions in $H^\{p\}$; Bernstein-Zygmund inequalities for the derivative of trigonometric polynomials in $L^\{p\}$-metric for $0<p<1$; necessary conditions for the convergence in $L^\{p\}$-metric; trigonometric series; Hardy-Littlewood inequality for functions in $H^\{p\}$; ; necessary conditions for the convergence in $L^\{p\}$-metric},
language = {eng},
number = {1},
pages = {75-88},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Necessary conditions for the $L^\{p\}$-convergence $(0<p<1)$ of single and double trigonometric series},
url = {http://eudml.org/doc/261093},
volume = {139},
year = {2014},
}
TY - JOUR
AU - Krasniqi, Xhevat Z.
AU - Kórus, Péter
AU - Móricz, Ferenc
TI - Necessary conditions for the $L^{p}$-convergence $(0<p<1)$ of single and double trigonometric series
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 1
SP - 75
EP - 88
AB - We give necessary conditions in terms of the coefficients for the convergence of a double trigonometric series in the $L^{p}$-metric, where $0<p<1$. The results and their proofs have been motivated by the recent papers of A. S. Belov (2008) and F. Móricz (2010). Our basic tools in the proofs are the Hardy-Littlewood inequality for functions in $H^{p}$ and the Bernstein-Zygmund inequalities for the derivatives of trigonometric polynomials and their conjugates in the $L^{p}$-metric, where $0<p<1$.
LA - eng
KW - trigonometric series; Hardy-Littlewood inequality for functions in $H^{p}$; Bernstein-Zygmund inequalities for the derivative of trigonometric polynomials in $L^{p}$-metric for $0<p<1$; necessary conditions for the convergence in $L^{p}$-metric; trigonometric series; Hardy-Littlewood inequality for functions in $H^{p}$; ; necessary conditions for the convergence in $L^{p}$-metric
UR - http://eudml.org/doc/261093
ER -
References
top- Arestov, V., 10.1070/IM1982v018n01ABEH001375, Math. USSR, Izv. 18 (1982), 1-18 translation from Izv. Akad. Nauk SSSR, Ser. Mat. 45 (1981), 3-22. (1981) MR0607574DOI10.1070/IM1982v018n01ABEH001375
- Belov, A. S., 10.1007/s10958-008-9204-2, J. Math. Sci., New York 155 5-17 (2008), translation from Sovrem. Mat., Fundam. Napravl. 25 (2007), 8-20. (2007) MR2342534DOI10.1007/s10958-008-9204-2
- Bustamante, J., Algebraic Approximation: A Guide to Past and Current Solutions, Frontiers in Mathematics Birkhäuser, Basel (2012). (2012) Zbl1248.41012MR3014919
- Hardy, G. H., Littlewood, J. E., 10.1007/BF01447865, Math. Ann. 97 (1927), 159-209. (1927) MR1512359DOI10.1007/BF01447865
- Krasniqi, X. Z., On the convergence (upper boundness) of trigonometric series, Math. Commun. 14 (2009), 245-254. (2009) Zbl1204.42006MR2743173
- Móricz, F., 10.1016/j.jmaa.2009.09.030, J. Math. Anal. Appl. 363 (2010), 559-568. (2010) Zbl1182.42009MR2564875DOI10.1016/j.jmaa.2009.09.030
- Runovski, K., Schmeisser, H.-J., 10.7169/facm/1538186723, Funct. Approx. Comment. Math. 29 (2001), 125-142. (2001) MR2135603DOI10.7169/facm/1538186723
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.