Displaying similar documents to “Necessary conditions for the L p -convergence ( 0 < p < 1 ) of single and double trigonometric series”

Cesàro summability of one- and two-dimensional trigonometric-Fourier series

Ferenc Weisz (1997)

Colloquium Mathematicae

Similarity:

We introduce p-quasilocal operators and prove that if a sublinear operator T is p-quasilocal and bounded from L to L then it is also bounded from the classical Hardy space H p ( T ) to L p (0 < p ≤ 1). As an application it is shown that the maximal operator of the one-parameter Cesàro means of a distribution is bounded from H p ( T ) to L p (3/4 < p ≤ ∞) and is of weak type ( L 1 , L 1 ) . We define the two-dimensional dyadic hybrid Hardy space H 1 ( T 2 ) and verify that the maximal operator of the Cesàro means of a two-dimensional...

Two sided norm estimate of the Bergman projection on L p spaces

Milutin R. Dostanić (2008)

Czechoslovak Mathematical Journal

Similarity:

We give some explicit values of the constants C 1 and C 2 in the inequality C 1 / sin ( π p ) P p C 2 / sin ( π p ) where P p denotes the norm of the Bergman projection on the L p space.

Degree sequences of graphs containing a cycle with prescribed length

Jian Hua Yin (2009)

Czechoslovak Mathematical Journal

Similarity:

Let r 3 , n r and π = ( d 1 , d 2 , ... , d n ) be a non-increasing sequence of nonnegative integers. If π has a realization G with vertex set V ( G ) = { v 1 , v 2 , ... , v n } such that d G ( v i ) = d i for i = 1 , 2 , ... , n and v 1 v 2 v r v 1 is a cycle of length r in G , then π is said to be potentially C r ' ' -graphic. In this paper, we give a characterization for π to be potentially C r ' ' -graphic.

Cauchy problem for the complex Ginzburg-Landau type Equation with L p -initial data

Daisuke Shimotsuma, Tomomi Yokota, Kentarou Yoshii (2014)

Mathematica Bohemica

Similarity:

This paper gives the local existence of mild solutions to the Cauchy problem for the complex Ginzburg-Landau type equation u t - ( λ + i α ) Δ u + ( κ + i β ) | u | q - 1 u - γ u = 0 in N × ( 0 , ) with L p -initial data u 0 in the subcritical case ( 1 q < 1 + 2 p / N ), where u is a complex-valued unknown function, α , β , γ , κ , λ > 0 , p > 1 , i = - 1 and N . The proof is based on the L p - L q estimates of the linear semigroup { exp ( t ( λ + i α ) Δ ) } and usual fixed-point argument.