Dynamics of systems with Preisach memory near equilibria

Stephen McCarthy; Dmitrii Rachinskii

Mathematica Bohemica (2014)

  • Volume: 139, Issue: 1, page 39-73
  • ISSN: 0862-7959

Abstract

top
We consider autonomous systems where two scalar differential equations are coupled with the input-output relationship of the Preisach hysteresis operator, which has an infinite-dimensional memory. A prototype system of this type is an LCR electric circuit where the inductive element has a ferromagnetic core with a hysteretic relationship between the magnetic field and the magnetization. Further examples of such systems include lumped hydrological models with two soil layers; they can also appear as a component of the recently proposed models of population dynamics. We study dynamics of such systems near an equilibrium point. In particular, we show and examine a similarity in the behaviour of trajectories between the system with the Preisach memory operator and a planar slow-fast ordinary differential equation. The nonsmooth Preisach operator introduces a singularity into the system. Furthermore, we classify the robust equilibrium points according to their stability properties. Conditions for stability, instability and partial stability are presented. A robust partially stable point simultaneously attracts many trajectories and repels many trajectories (a behaviour which is not generic for smooth ordinary differential equations). We discuss implications of such local dynamics for the excitability properties of the system.

How to cite

top

McCarthy, Stephen, and Rachinskii, Dmitrii. "Dynamics of systems with Preisach memory near equilibria." Mathematica Bohemica 139.1 (2014): 39-73. <http://eudml.org/doc/261098>.

@article{McCarthy2014,
abstract = {We consider autonomous systems where two scalar differential equations are coupled with the input-output relationship of the Preisach hysteresis operator, which has an infinite-dimensional memory. A prototype system of this type is an LCR electric circuit where the inductive element has a ferromagnetic core with a hysteretic relationship between the magnetic field and the magnetization. Further examples of such systems include lumped hydrological models with two soil layers; they can also appear as a component of the recently proposed models of population dynamics. We study dynamics of such systems near an equilibrium point. In particular, we show and examine a similarity in the behaviour of trajectories between the system with the Preisach memory operator and a planar slow-fast ordinary differential equation. The nonsmooth Preisach operator introduces a singularity into the system. Furthermore, we classify the robust equilibrium points according to their stability properties. Conditions for stability, instability and partial stability are presented. A robust partially stable point simultaneously attracts many trajectories and repels many trajectories (a behaviour which is not generic for smooth ordinary differential equations). We discuss implications of such local dynamics for the excitability properties of the system.},
author = {McCarthy, Stephen, Rachinskii, Dmitrii},
journal = {Mathematica Bohemica},
keywords = {return-point memory; Preisach operator; oscillator with memory; hysteresis; operator-differential equation; stability of equilibrium; partial stability; slow-fast system; switching line; excitability; return-point memory; Preisach operator; oscillator with memory; hysteresis; operator-differential equation; stability of equilibrium; partial stability; slow-fast system; switching line; excitability},
language = {eng},
number = {1},
pages = {39-73},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Dynamics of systems with Preisach memory near equilibria},
url = {http://eudml.org/doc/261098},
volume = {139},
year = {2014},
}

TY - JOUR
AU - McCarthy, Stephen
AU - Rachinskii, Dmitrii
TI - Dynamics of systems with Preisach memory near equilibria
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 1
SP - 39
EP - 73
AB - We consider autonomous systems where two scalar differential equations are coupled with the input-output relationship of the Preisach hysteresis operator, which has an infinite-dimensional memory. A prototype system of this type is an LCR electric circuit where the inductive element has a ferromagnetic core with a hysteretic relationship between the magnetic field and the magnetization. Further examples of such systems include lumped hydrological models with two soil layers; they can also appear as a component of the recently proposed models of population dynamics. We study dynamics of such systems near an equilibrium point. In particular, we show and examine a similarity in the behaviour of trajectories between the system with the Preisach memory operator and a planar slow-fast ordinary differential equation. The nonsmooth Preisach operator introduces a singularity into the system. Furthermore, we classify the robust equilibrium points according to their stability properties. Conditions for stability, instability and partial stability are presented. A robust partially stable point simultaneously attracts many trajectories and repels many trajectories (a behaviour which is not generic for smooth ordinary differential equations). We discuss implications of such local dynamics for the excitability properties of the system.
LA - eng
KW - return-point memory; Preisach operator; oscillator with memory; hysteresis; operator-differential equation; stability of equilibrium; partial stability; slow-fast system; switching line; excitability; return-point memory; Preisach operator; oscillator with memory; hysteresis; operator-differential equation; stability of equilibrium; partial stability; slow-fast system; switching line; excitability
UR - http://eudml.org/doc/261098
ER -

References

top
  1. Appelbe, B., Rachinskii, D., Zhezherun, A., 10.1016/j.physb.2007.08.034, Physica B 403 (2008), 301-304. (2008) DOI10.1016/j.physb.2007.08.034
  2. Appelbe, B., Flynn, D., McNamara, H., O'Kane, J. P., Pimenov, A., Pokrovskii, A., Rachinskii, D., Zhezherun, A., 10.1109/MCS.2008.930923, IEEE Control Syst. Mag. 29 (2009), 44-69. (2009) DOI10.1109/MCS.2008.930923
  3. Balanov, Z., Krawcewicz, W., Rachinskii, D., Zhezherun, A., 10.1007/s10884-012-9271-4, J. Dyn. Differ. Equations 24 (2012), 713-759. (2012) Zbl1264.34093MR3000601DOI10.1007/s10884-012-9271-4
  4. Bessoud, A.-L., Stefanelli, U., 10.1142/S0218202511005246, Math. Models Methods Appl. Sci. 21 (2011), 1043-1069. (2011) MR2804528DOI10.1142/S0218202511005246
  5. Brokate, M., Sprekels, J., 10.1007/978-1-4612-4048-8_5, Applied Mathematical Sciences 121 Springer, New York (1996). (1996) Zbl0951.74002MR1411908DOI10.1007/978-1-4612-4048-8_5
  6. Brokate, M., Pokrovskii, A. V., Rachinskii, D., Rasskazov, O., Differential equations with hysteresis via a canonical example, G. Bertotti et al. The Science of Hysteresis. Vol. I Mathematical modeling and applications Elsevier, Academic Press, Amsterdam (2006), 125-291. (2006) Zbl1142.34026
  7. Brokate, M., Pokrovskii, A., Rachinskii, D., 10.1016/j.jmaa.2006.02.060, J. Math. Anal. Appl. 319 (2006), 94-109. (2006) Zbl1111.34035MR2217849DOI10.1016/j.jmaa.2006.02.060
  8. Brokate, M., MacCarthy, S., Pimenov, A., Pokrovskii, A., Rachinskii, D., 10.1007/s10666-011-9258-2, Environ Model Assess 16 (2011), 313-333. (2011) DOI10.1007/s10666-011-9258-2
  9. Cagnol, J., Miara, B., Mielke, A., Stavroulakis, G., State of the Art, Trends, and Directions in Smart Systems. www.wias-berlin.de/people/mielke/papers/stateoftheart.pdf, . 
  10. Cellai, D., Lawlor, A., Dawson, K. A., Gleeson, J. P., 10.1103/PhysRevLett.107.175703, Phys. Rev. Lett. 107 (2011), no. 175703, 5 pages. (2011) DOI10.1103/PhysRevLett.107.175703
  11. Cross, R., McNamara, H., Pokrovskii, A., Rachinskii, D., 10.1016/j.physb.2007.08.017, Physica B 403 (2008), 231-236. (2008) DOI10.1016/j.physb.2007.08.017
  12. Cross, R., McNamara, H., Pokrovskii, A., 10.1016/j.physb.2007.08.073, Physica B 403 (2008), 451-455. (2008) DOI10.1016/j.physb.2007.08.073
  13. Cross, R., McNamara, H., Pokrovskii, A., Memory of recessions, Strathclyde discussion papers in economics no. 10-09, 26 pages (2010). (2010) 
  14. Cross, R., McNamara, H., Kalachev, L., Pokrovskii, A., Hysteresis in the fundamentals of macroeconomics, Strathclyde discussion papers in economics no. 10-08, 35 pages (2010). (2010) 
  15. Cross, R., 10.1017/S0266267100005113, Economics and Philosophy 9 (1993), 53-74. (1993) DOI10.1017/S0266267100005113
  16. Cross, R., Grinfeld, M., Lamba, H., 10.1109/MCS.2008.930445, IEEE Control Syst. Mag. 29 (2009), 30-43. (2009) MR2477927DOI10.1109/MCS.2008.930445
  17. Cross, R., McNamara, H., Kalachev, L., Pokrovskii, A., 10.3934/dcdsb.2013.18.377, Discrete Contin. Dyn. Syst., Ser. B 18 (2013), 377-401. (2013) Zbl1268.91121MR2999082DOI10.3934/dcdsb.2013.18.377
  18. Dahmen, K., Ben-Zion, Y., Jerky motion in slowly driven magnetic and earthquake fault systems, physics of, C. Marchetti, R. A. Meyers Encyclopedia of Complexity and Systems Science Springer (2009), 5021-5037. (2009) 
  19. Davino, D., Giustiniani, A., Visone, C., Compensation and control of two-inputs systems with hysteresis, J. Phys.: Conf. Ser. 268 (2011), no. 12005, 16 pages. (2011) 
  20. Diamond, P., Rachinskii, D., Yumagulov, M., Stability of large cycles in a nonsmooth problem with Hopf bifurcation at infinity, Nonlinear Anal., Theory Methods Appl. 42 (2000), 1017-1031. (2000) Zbl0963.34034MR1780452
  21. Diamond, P., Kuznetsov, N., Rachinskii, D., 10.1006/jdeq.2000.3916, J. Differ. Equations 175 (2001), 1-26. (2001) Zbl0984.34029MR1849221DOI10.1006/jdeq.2000.3916
  22. Ekanayake, D., Iyer, R. V., 10.1016/j.physb.2007.08.023, Physica B: Physics of Condensed Matter 403 (2008), 257-260. (2008) DOI10.1016/j.physb.2007.08.023
  23. Eleuteri, M., Lussardi, L., Stefanelli, U., 10.3934/nhm.2011.6.145, Netw. Heterog. Media (electronic only) 6 (2011), 145-165. (2011) Zbl1263.74016MR2777014DOI10.3934/nhm.2011.6.145
  24. Eleuteri, M., Kopfová, J., Krejčí, P., 10.1137/080718383, SIAM J. Math. Anal. 41 (2009), 435-464. (2009) MR2507458DOI10.1137/080718383
  25. Flynn, D., McNamara, H., O'Kane, J. P., Pokrovskii, A., 10.1016/B978-012480874-4/50025-7, G. Bertottiand, I. D. Mayergoyz The Science of Hysteresis Vol. III Hysteresis in materials Elsevier, Academic Press, Amsterdam (2006), 689-744. (2006) Zbl1136.76048DOI10.1016/B978-012480874-4/50025-7
  26. Flynn, D., Zhezherun, A., Pokrovskii, A., O'Kane, J. P., 10.1016/j.physb.2007.08.070, Physica B 403 (2008), 440-442. (2008) DOI10.1016/j.physb.2007.08.070
  27. Gleeson, J. P., 10.1103/PhysRevLett.107.068701, Phys. Rev. Lett. 107 (2011), no. 068701, 9 pages. (2011) DOI10.1103/PhysRevLett.107.068701
  28. Göcke, M., 10.1111/1467-6419.00163, Journal of Economic Surveys 16 (2002), 167-188. (2002) DOI10.1111/1467-6419.00163
  29. D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, G. Huyet, 10.1103/PhysRevLett.98.153903, Phys. Rev. Lett. 98 (2007), no. 153903, 4 pages. (2007) DOI10.1103/PhysRevLett.98.153903
  30. (ed.), A. Ivanyi, Preisach Memorial Book, Akademiai Kiado Budapest (2005). (2005) 
  31. Iyer, R. V., Tan, X., Krishnaprasad, P. S., 10.1109/TAC.2005.849205, IEEE Trans. Automat. Control 50 (2005), 798-810. (2005) MR2141996DOI10.1109/TAC.2005.849205
  32. Jayawardhana, B., Logemann, H., Ryan, E. P., Infinite-dimensional feedback systems: the circle criterion and input-to-state stability, Commun. Inf. Syst. 8 (2008), 413-444. (2008) Zbl1168.93021MR2495748
  33. Krasnosel'skii, A. M., Rachinskii, D., 10.1007/s00030-002-8120-2, NoDEA, Nonlinear Differ. Equ. Appl. 9 (2002), 93-115. (2002) Zbl1013.34036MR1891697DOI10.1007/s00030-002-8120-2
  34. Krasnosel'skii, M., Pokrovskii, A., Systems with Hysteresis, Translated from the Russian by Marek Niezgódka Springer, Berlin (1989). (1989) Zbl0665.47038MR0987431
  35. Krauskopf, B., Schneider, K. R., Sieber, J., Wieczorek, S. M., Wolfrum, M., 10.1016/S0030-4018(02)02239-3, Optics Communications 215 (2003), 367-379. (2003) DOI10.1016/S0030-4018(02)02239-3
  36. Krejčí, P., On Maxwell equations with the Preisach hysteresis operator: The one-dimensional time-periodic case, Apl. Mat. 34 (1989), 364-374. (1989) Zbl0701.35098MR1014077
  37. Krejčí, P., O'Kane, J. P., Pokrovskii, A., Rachinskii, D., Mathematical models of hydrological systems with Preisach hysteresis, Physica D 241 (2012), 2010-2028. (2012) MR2994340
  38. Krejčí, P., O'Kane, J. P., Pokrovskii, A., Rachinskii, D., Stability results for a soil model with singular hysteretic hydrology, J. Phys.: Conf. Ser. 268 (2011), no. 012016, 19 pages. (2011) 
  39. Krejčí, P., 10.1023/A:1022333500777, Appl. Math., Praha 45 (2000), 439-468. (2000) Zbl1010.34038MR1800964DOI10.1023/A:1022333500777
  40. Kuhnen, K., Krejčí, P., 10.1109/TAC.2009.2012984, IEEE Trans. Automat. Control 54 (2009), 537-550. (2009) MR2191546DOI10.1109/TAC.2009.2012984
  41. Lamba, H., Grinfeld, M., McKee, S., Simpson, R., 10.1109/20.595906, IEEE Transactions on Magnetics 33 (1997), 2495-2500. (1997) DOI10.1109/20.595906
  42. Lamba, H., McKee, S., Simpson, R., 10.1088/0305-4470/31/34/010, J. Phys. A, Math. Gen. 31 (1998), 7065-7076. (1998) Zbl1041.94552DOI10.1088/0305-4470/31/34/010
  43. Mayergoyz, I. D., Mathematical Models of Hysteresis, Springer, New York (1991). (1991) Zbl0723.73003MR1083150
  44. Mayergoyz, I. D., (eds.), G. Bertotti, The Science of Hysteresis. Vol. III, Hysteresis in materials Elsevier, Academic Press, Amsterdam (2006). (2006) Zbl1117.34047MR2307931
  45. McCarthy, S., Rachinskii, D., Attempts at a numerical realisation of stochastic differential equations containing Preisach operator, J. Phys.: Conf. Ser. 268 (2011), no. 012019, 15 pages. (2011) 
  46. O'Kane, J. P., 10.1016/j.physb.2005.10.090, Physica B: Condensed Matter 372 (2006), 388-392. (2006) DOI10.1016/j.physb.2005.10.090
  47. O'Kane, J. P., Hysteresis in hydrology, Acta Geophys. Pol. 53 (2005), 373-383. (2005) 
  48. O'Kane, J. P., The FEST model-a test bed for hysteresis in hydrology and soil physics, J. Phys.: Conf. Ser. 22 (2005), 148-163. (2005) 
  49. O'Kane, J. P., Pokrovskii, A., Krejčí, P., Haverkamp, R., Hysteresis and terrestrial hydrology, EGS-AGU-EUG Joint Assembly 1 (2003), 6154. (2003) 
  50. Pimenov, A., Rachinskii, D., 10.3934/dcdsb.2009.11.997, Discrete Contin. Dyn. Syst., Ser. B 11 (2009), 997-1018. (2009) Zbl1181.47075MR2505656DOI10.3934/dcdsb.2009.11.997
  51. Pimenov, A., Kelly, T. C., Korobeinikov, A., O'Callaghan, M. J. A., Pokrovskii, A., Rachinskii, D., 10.1051/mmnp/20127313, Math. Model. Nat. Phenom. 7 (2012), 1-30. (2012) MR2928740DOI10.1051/mmnp/20127313
  52. Pimenov, A., Kelly, T. C., Korobeinikov, A., O'Callaghan, M. J., Pokrovskii, A., Systems with hysteresis in mathematical biology via a canonical example, Mathematical Modeling, Clustering Algorithms and Applications C. L. Wilson Nova Science Publishers (2010). (2010) 
  53. Sander, G. S., Glidewell, O. J., Norbury, J., Dynamic capillary pressure, hysteresis and gravity-driven fingering in porous media, J. Phys.: Conf. Ser. 138 (2008), no. 012023, 14 pages. (2008) 
  54. Sethna, J. P., Dahmen, K. A., Perković, O., Random-field Ising models of hysteresis, The science of Hysteresis Vol. II Physical modeling, micromagnetics, and magnetization dynamics G. Bertotti, I. Mayergoyz Elsevier, Academic Press, Amsterdam (2006), 107-179. (2006) Zbl1148.82018MR2307930
  55. Spanos, P.D., Cacciola, P., Muscolino, G., 10.1061/(ASCE)0733-9399(2004)130:11(1257), J. Eng. Mech. 130 (2004), 1257-1267. (2004) DOI10.1061/(ASCE)0733-9399(2004)130:11(1257)
  56. Rachinskii, D., 10.1007/s000300050076, NoDEA, Nonlinear Differ. Equ. Appl. 6 (1999), 267-288. (1999) Zbl0938.34036MR1710574DOI10.1007/s000300050076
  57. Rezaei-Zare, A., Sanaye-Pasand, M., Mohseni, H., Farhangi, S., Iravani, R., 10.1109/TPWRD.2006.877078, IEEE Trans. Power Deliv. 22 (2007), 919-929. (2007) DOI10.1109/TPWRD.2006.877078
  58. Visintin, A., 10.1007/978-3-662-11557-2, Applied Mathematical Sciences 111 Springer, Berlin (1994). (1994) Zbl0820.35004MR1329094DOI10.1007/978-3-662-11557-2
  59. Visone, C., Hysteresis modelling and compensation for smart sensors and actuators, J. Phys.: Conf. Ser. 138 (2008), no. 012028, 24 pages. (2008) 
  60. Wang, Y., Ying, Z. G., Zhu, W. Q., 10.1016/j.probengmech.2008.07.003, Probabilistic Engineering Mechanics 24 (2009), 255-264. (2009) DOI10.1016/j.probengmech.2008.07.003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.