Dynamics of systems with Preisach memory near equilibria
Stephen McCarthy; Dmitrii Rachinskii
Mathematica Bohemica (2014)
- Volume: 139, Issue: 1, page 39-73
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMcCarthy, Stephen, and Rachinskii, Dmitrii. "Dynamics of systems with Preisach memory near equilibria." Mathematica Bohemica 139.1 (2014): 39-73. <http://eudml.org/doc/261098>.
@article{McCarthy2014,
abstract = {We consider autonomous systems where two scalar differential equations are coupled with the input-output relationship of the Preisach hysteresis operator, which has an infinite-dimensional memory. A prototype system of this type is an LCR electric circuit where the inductive element has a ferromagnetic core with a hysteretic relationship between the magnetic field and the magnetization. Further examples of such systems include lumped hydrological models with two soil layers; they can also appear as a component of the recently proposed models of population dynamics. We study dynamics of such systems near an equilibrium point. In particular, we show and examine a similarity in the behaviour of trajectories between the system with the Preisach memory operator and a planar slow-fast ordinary differential equation. The nonsmooth Preisach operator introduces a singularity into the system. Furthermore, we classify the robust equilibrium points according to their stability properties. Conditions for stability, instability and partial stability are presented. A robust partially stable point simultaneously attracts many trajectories and repels many trajectories (a behaviour which is not generic for smooth ordinary differential equations). We discuss implications of such local dynamics for the excitability properties of the system.},
author = {McCarthy, Stephen, Rachinskii, Dmitrii},
journal = {Mathematica Bohemica},
keywords = {return-point memory; Preisach operator; oscillator with memory; hysteresis; operator-differential equation; stability of equilibrium; partial stability; slow-fast system; switching line; excitability; return-point memory; Preisach operator; oscillator with memory; hysteresis; operator-differential equation; stability of equilibrium; partial stability; slow-fast system; switching line; excitability},
language = {eng},
number = {1},
pages = {39-73},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Dynamics of systems with Preisach memory near equilibria},
url = {http://eudml.org/doc/261098},
volume = {139},
year = {2014},
}
TY - JOUR
AU - McCarthy, Stephen
AU - Rachinskii, Dmitrii
TI - Dynamics of systems with Preisach memory near equilibria
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 1
SP - 39
EP - 73
AB - We consider autonomous systems where two scalar differential equations are coupled with the input-output relationship of the Preisach hysteresis operator, which has an infinite-dimensional memory. A prototype system of this type is an LCR electric circuit where the inductive element has a ferromagnetic core with a hysteretic relationship between the magnetic field and the magnetization. Further examples of such systems include lumped hydrological models with two soil layers; they can also appear as a component of the recently proposed models of population dynamics. We study dynamics of such systems near an equilibrium point. In particular, we show and examine a similarity in the behaviour of trajectories between the system with the Preisach memory operator and a planar slow-fast ordinary differential equation. The nonsmooth Preisach operator introduces a singularity into the system. Furthermore, we classify the robust equilibrium points according to their stability properties. Conditions for stability, instability and partial stability are presented. A robust partially stable point simultaneously attracts many trajectories and repels many trajectories (a behaviour which is not generic for smooth ordinary differential equations). We discuss implications of such local dynamics for the excitability properties of the system.
LA - eng
KW - return-point memory; Preisach operator; oscillator with memory; hysteresis; operator-differential equation; stability of equilibrium; partial stability; slow-fast system; switching line; excitability; return-point memory; Preisach operator; oscillator with memory; hysteresis; operator-differential equation; stability of equilibrium; partial stability; slow-fast system; switching line; excitability
UR - http://eudml.org/doc/261098
ER -
References
top- Appelbe, B., Rachinskii, D., Zhezherun, A., 10.1016/j.physb.2007.08.034, Physica B 403 (2008), 301-304. (2008) DOI10.1016/j.physb.2007.08.034
- Appelbe, B., Flynn, D., McNamara, H., O'Kane, J. P., Pimenov, A., Pokrovskii, A., Rachinskii, D., Zhezherun, A., 10.1109/MCS.2008.930923, IEEE Control Syst. Mag. 29 (2009), 44-69. (2009) DOI10.1109/MCS.2008.930923
- Balanov, Z., Krawcewicz, W., Rachinskii, D., Zhezherun, A., 10.1007/s10884-012-9271-4, J. Dyn. Differ. Equations 24 (2012), 713-759. (2012) Zbl1264.34093MR3000601DOI10.1007/s10884-012-9271-4
- Bessoud, A.-L., Stefanelli, U., 10.1142/S0218202511005246, Math. Models Methods Appl. Sci. 21 (2011), 1043-1069. (2011) MR2804528DOI10.1142/S0218202511005246
- Brokate, M., Sprekels, J., 10.1007/978-1-4612-4048-8_5, Applied Mathematical Sciences 121 Springer, New York (1996). (1996) Zbl0951.74002MR1411908DOI10.1007/978-1-4612-4048-8_5
- Brokate, M., Pokrovskii, A. V., Rachinskii, D., Rasskazov, O., Differential equations with hysteresis via a canonical example, G. Bertotti et al. The Science of Hysteresis. Vol. I Mathematical modeling and applications Elsevier, Academic Press, Amsterdam (2006), 125-291. (2006) Zbl1142.34026
- Brokate, M., Pokrovskii, A., Rachinskii, D., 10.1016/j.jmaa.2006.02.060, J. Math. Anal. Appl. 319 (2006), 94-109. (2006) Zbl1111.34035MR2217849DOI10.1016/j.jmaa.2006.02.060
- Brokate, M., MacCarthy, S., Pimenov, A., Pokrovskii, A., Rachinskii, D., 10.1007/s10666-011-9258-2, Environ Model Assess 16 (2011), 313-333. (2011) DOI10.1007/s10666-011-9258-2
- Cagnol, J., Miara, B., Mielke, A., Stavroulakis, G., State of the Art, Trends, and Directions in Smart Systems. www.wias-berlin.de/people/mielke/papers/stateoftheart.pdf, .
- Cellai, D., Lawlor, A., Dawson, K. A., Gleeson, J. P., 10.1103/PhysRevLett.107.175703, Phys. Rev. Lett. 107 (2011), no. 175703, 5 pages. (2011) DOI10.1103/PhysRevLett.107.175703
- Cross, R., McNamara, H., Pokrovskii, A., Rachinskii, D., 10.1016/j.physb.2007.08.017, Physica B 403 (2008), 231-236. (2008) DOI10.1016/j.physb.2007.08.017
- Cross, R., McNamara, H., Pokrovskii, A., 10.1016/j.physb.2007.08.073, Physica B 403 (2008), 451-455. (2008) DOI10.1016/j.physb.2007.08.073
- Cross, R., McNamara, H., Pokrovskii, A., Memory of recessions, Strathclyde discussion papers in economics no. 10-09, 26 pages (2010). (2010)
- Cross, R., McNamara, H., Kalachev, L., Pokrovskii, A., Hysteresis in the fundamentals of macroeconomics, Strathclyde discussion papers in economics no. 10-08, 35 pages (2010). (2010)
- Cross, R., 10.1017/S0266267100005113, Economics and Philosophy 9 (1993), 53-74. (1993) DOI10.1017/S0266267100005113
- Cross, R., Grinfeld, M., Lamba, H., 10.1109/MCS.2008.930445, IEEE Control Syst. Mag. 29 (2009), 30-43. (2009) MR2477927DOI10.1109/MCS.2008.930445
- Cross, R., McNamara, H., Kalachev, L., Pokrovskii, A., 10.3934/dcdsb.2013.18.377, Discrete Contin. Dyn. Syst., Ser. B 18 (2013), 377-401. (2013) Zbl1268.91121MR2999082DOI10.3934/dcdsb.2013.18.377
- Dahmen, K., Ben-Zion, Y., Jerky motion in slowly driven magnetic and earthquake fault systems, physics of, C. Marchetti, R. A. Meyers Encyclopedia of Complexity and Systems Science Springer (2009), 5021-5037. (2009)
- Davino, D., Giustiniani, A., Visone, C., Compensation and control of two-inputs systems with hysteresis, J. Phys.: Conf. Ser. 268 (2011), no. 12005, 16 pages. (2011)
- Diamond, P., Rachinskii, D., Yumagulov, M., Stability of large cycles in a nonsmooth problem with Hopf bifurcation at infinity, Nonlinear Anal., Theory Methods Appl. 42 (2000), 1017-1031. (2000) Zbl0963.34034MR1780452
- Diamond, P., Kuznetsov, N., Rachinskii, D., 10.1006/jdeq.2000.3916, J. Differ. Equations 175 (2001), 1-26. (2001) Zbl0984.34029MR1849221DOI10.1006/jdeq.2000.3916
- Ekanayake, D., Iyer, R. V., 10.1016/j.physb.2007.08.023, Physica B: Physics of Condensed Matter 403 (2008), 257-260. (2008) DOI10.1016/j.physb.2007.08.023
- Eleuteri, M., Lussardi, L., Stefanelli, U., 10.3934/nhm.2011.6.145, Netw. Heterog. Media (electronic only) 6 (2011), 145-165. (2011) Zbl1263.74016MR2777014DOI10.3934/nhm.2011.6.145
- Eleuteri, M., Kopfová, J., Krejčí, P., 10.1137/080718383, SIAM J. Math. Anal. 41 (2009), 435-464. (2009) MR2507458DOI10.1137/080718383
- Flynn, D., McNamara, H., O'Kane, J. P., Pokrovskii, A., 10.1016/B978-012480874-4/50025-7, G. Bertottiand, I. D. Mayergoyz The Science of Hysteresis Vol. III Hysteresis in materials Elsevier, Academic Press, Amsterdam (2006), 689-744. (2006) Zbl1136.76048DOI10.1016/B978-012480874-4/50025-7
- Flynn, D., Zhezherun, A., Pokrovskii, A., O'Kane, J. P., 10.1016/j.physb.2007.08.070, Physica B 403 (2008), 440-442. (2008) DOI10.1016/j.physb.2007.08.070
- Gleeson, J. P., 10.1103/PhysRevLett.107.068701, Phys. Rev. Lett. 107 (2011), no. 068701, 9 pages. (2011) DOI10.1103/PhysRevLett.107.068701
- Göcke, M., 10.1111/1467-6419.00163, Journal of Economic Surveys 16 (2002), 167-188. (2002) DOI10.1111/1467-6419.00163
- D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, G. Huyet, 10.1103/PhysRevLett.98.153903, Phys. Rev. Lett. 98 (2007), no. 153903, 4 pages. (2007) DOI10.1103/PhysRevLett.98.153903
- (ed.), A. Ivanyi, Preisach Memorial Book, Akademiai Kiado Budapest (2005). (2005)
- Iyer, R. V., Tan, X., Krishnaprasad, P. S., 10.1109/TAC.2005.849205, IEEE Trans. Automat. Control 50 (2005), 798-810. (2005) MR2141996DOI10.1109/TAC.2005.849205
- Jayawardhana, B., Logemann, H., Ryan, E. P., Infinite-dimensional feedback systems: the circle criterion and input-to-state stability, Commun. Inf. Syst. 8 (2008), 413-444. (2008) Zbl1168.93021MR2495748
- Krasnosel'skii, A. M., Rachinskii, D., 10.1007/s00030-002-8120-2, NoDEA, Nonlinear Differ. Equ. Appl. 9 (2002), 93-115. (2002) Zbl1013.34036MR1891697DOI10.1007/s00030-002-8120-2
- Krasnosel'skii, M., Pokrovskii, A., Systems with Hysteresis, Translated from the Russian by Marek Niezgódka Springer, Berlin (1989). (1989) Zbl0665.47038MR0987431
- Krauskopf, B., Schneider, K. R., Sieber, J., Wieczorek, S. M., Wolfrum, M., 10.1016/S0030-4018(02)02239-3, Optics Communications 215 (2003), 367-379. (2003) DOI10.1016/S0030-4018(02)02239-3
- Krejčí, P., On Maxwell equations with the Preisach hysteresis operator: The one-dimensional time-periodic case, Apl. Mat. 34 (1989), 364-374. (1989) Zbl0701.35098MR1014077
- Krejčí, P., O'Kane, J. P., Pokrovskii, A., Rachinskii, D., Mathematical models of hydrological systems with Preisach hysteresis, Physica D 241 (2012), 2010-2028. (2012) MR2994340
- Krejčí, P., O'Kane, J. P., Pokrovskii, A., Rachinskii, D., Stability results for a soil model with singular hysteretic hydrology, J. Phys.: Conf. Ser. 268 (2011), no. 012016, 19 pages. (2011)
- Krejčí, P., 10.1023/A:1022333500777, Appl. Math., Praha 45 (2000), 439-468. (2000) Zbl1010.34038MR1800964DOI10.1023/A:1022333500777
- Kuhnen, K., Krejčí, P., 10.1109/TAC.2009.2012984, IEEE Trans. Automat. Control 54 (2009), 537-550. (2009) MR2191546DOI10.1109/TAC.2009.2012984
- Lamba, H., Grinfeld, M., McKee, S., Simpson, R., 10.1109/20.595906, IEEE Transactions on Magnetics 33 (1997), 2495-2500. (1997) DOI10.1109/20.595906
- Lamba, H., McKee, S., Simpson, R., 10.1088/0305-4470/31/34/010, J. Phys. A, Math. Gen. 31 (1998), 7065-7076. (1998) Zbl1041.94552DOI10.1088/0305-4470/31/34/010
- Mayergoyz, I. D., Mathematical Models of Hysteresis, Springer, New York (1991). (1991) Zbl0723.73003MR1083150
- Mayergoyz, I. D., (eds.), G. Bertotti, The Science of Hysteresis. Vol. III, Hysteresis in materials Elsevier, Academic Press, Amsterdam (2006). (2006) Zbl1117.34047MR2307931
- McCarthy, S., Rachinskii, D., Attempts at a numerical realisation of stochastic differential equations containing Preisach operator, J. Phys.: Conf. Ser. 268 (2011), no. 012019, 15 pages. (2011)
- O'Kane, J. P., 10.1016/j.physb.2005.10.090, Physica B: Condensed Matter 372 (2006), 388-392. (2006) DOI10.1016/j.physb.2005.10.090
- O'Kane, J. P., Hysteresis in hydrology, Acta Geophys. Pol. 53 (2005), 373-383. (2005)
- O'Kane, J. P., The FEST model-a test bed for hysteresis in hydrology and soil physics, J. Phys.: Conf. Ser. 22 (2005), 148-163. (2005)
- O'Kane, J. P., Pokrovskii, A., Krejčí, P., Haverkamp, R., Hysteresis and terrestrial hydrology, EGS-AGU-EUG Joint Assembly 1 (2003), 6154. (2003)
- Pimenov, A., Rachinskii, D., 10.3934/dcdsb.2009.11.997, Discrete Contin. Dyn. Syst., Ser. B 11 (2009), 997-1018. (2009) Zbl1181.47075MR2505656DOI10.3934/dcdsb.2009.11.997
- Pimenov, A., Kelly, T. C., Korobeinikov, A., O'Callaghan, M. J. A., Pokrovskii, A., Rachinskii, D., 10.1051/mmnp/20127313, Math. Model. Nat. Phenom. 7 (2012), 1-30. (2012) MR2928740DOI10.1051/mmnp/20127313
- Pimenov, A., Kelly, T. C., Korobeinikov, A., O'Callaghan, M. J., Pokrovskii, A., Systems with hysteresis in mathematical biology via a canonical example, Mathematical Modeling, Clustering Algorithms and Applications C. L. Wilson Nova Science Publishers (2010). (2010)
- Sander, G. S., Glidewell, O. J., Norbury, J., Dynamic capillary pressure, hysteresis and gravity-driven fingering in porous media, J. Phys.: Conf. Ser. 138 (2008), no. 012023, 14 pages. (2008)
- Sethna, J. P., Dahmen, K. A., Perković, O., Random-field Ising models of hysteresis, The science of Hysteresis Vol. II Physical modeling, micromagnetics, and magnetization dynamics G. Bertotti, I. Mayergoyz Elsevier, Academic Press, Amsterdam (2006), 107-179. (2006) Zbl1148.82018MR2307930
- Spanos, P.D., Cacciola, P., Muscolino, G., 10.1061/(ASCE)0733-9399(2004)130:11(1257), J. Eng. Mech. 130 (2004), 1257-1267. (2004) DOI10.1061/(ASCE)0733-9399(2004)130:11(1257)
- Rachinskii, D., 10.1007/s000300050076, NoDEA, Nonlinear Differ. Equ. Appl. 6 (1999), 267-288. (1999) Zbl0938.34036MR1710574DOI10.1007/s000300050076
- Rezaei-Zare, A., Sanaye-Pasand, M., Mohseni, H., Farhangi, S., Iravani, R., 10.1109/TPWRD.2006.877078, IEEE Trans. Power Deliv. 22 (2007), 919-929. (2007) DOI10.1109/TPWRD.2006.877078
- Visintin, A., 10.1007/978-3-662-11557-2, Applied Mathematical Sciences 111 Springer, Berlin (1994). (1994) Zbl0820.35004MR1329094DOI10.1007/978-3-662-11557-2
- Visone, C., Hysteresis modelling and compensation for smart sensors and actuators, J. Phys.: Conf. Ser. 138 (2008), no. 012028, 24 pages. (2008)
- Wang, Y., Ying, Z. G., Zhu, W. Q., 10.1016/j.probengmech.2008.07.003, Probabilistic Engineering Mechanics 24 (2009), 255-264. (2009) DOI10.1016/j.probengmech.2008.07.003
Citations in EuDML Documents
top- Alexander M. Kamachkin, Dmitriy K. Potapov, Victoria V. Yevstafyeva, Continuous dependence on parameters and boundedness of solutions to a hysteresis system
- Alexander M. Kamachkin, Dmitriy K. Potapov, Victoria V. Yevstafyeva, Two-point oscillatory solutions to system with relay hysteresis and nonperiodic external disturbance
- Alexander Pimenov, Dmitrii Rachinskii, Homoclinic orbits in a two-patch predator-prey model with Preisach hysteresis operator
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.