Two-point oscillatory solutions to system with relay hysteresis and nonperiodic external disturbance

Alexander M. Kamachkin; Dmitriy K. Potapov; Victoria V. Yevstafyeva

Applications of Mathematics (2024)

  • Volume: 69, Issue: 3, page 395-414
  • ISSN: 0862-7940

Abstract

top
We study an n -dimensional system of ordinary differential equations with a constant matrix, a relay-type nonlinearity, and an external disturbance in the right-hand side. We consider a nonideal relay characteristic. The external disturbance is described by the product of an exponential function and a sine function with an initial phase as a parameter. We assume the matrix of the linear part and the vector at the relay characteristic such that, by a nonsingular transformation, the system is reduced to the form with the diagonal matrix and the vector being opposite to the unit vector. We establish a necessary and sufficient condition for the existence of two-point oscillatory solutions, i.e., the solutions with two fixed points on the hyperplanes of the relay switching in phase space. Also, we give the sufficient conditions under which such solutions do not exist. We provide a supporting example, which demonstrates how to apply the obtained results.

How to cite

top

Kamachkin, Alexander M., Potapov, Dmitriy K., and Yevstafyeva, Victoria V.. "Two-point oscillatory solutions to system with relay hysteresis and nonperiodic external disturbance." Applications of Mathematics 69.3 (2024): 395-414. <http://eudml.org/doc/299484>.

@article{Kamachkin2024,
abstract = {We study an $n$-dimensional system of ordinary differential equations with a constant matrix, a relay-type nonlinearity, and an external disturbance in the right-hand side. We consider a nonideal relay characteristic. The external disturbance is described by the product of an exponential function and a sine function with an initial phase as a parameter. We assume the matrix of the linear part and the vector at the relay characteristic such that, by a nonsingular transformation, the system is reduced to the form with the diagonal matrix and the vector being opposite to the unit vector. We establish a necessary and sufficient condition for the existence of two-point oscillatory solutions, i.e., the solutions with two fixed points on the hyperplanes of the relay switching in phase space. Also, we give the sufficient conditions under which such solutions do not exist. We provide a supporting example, which demonstrates how to apply the obtained results.},
author = {Kamachkin, Alexander M., Potapov, Dmitriy K., Yevstafyeva, Victoria V.},
journal = {Applications of Mathematics},
keywords = {ODE system; relay hysteresis; nonperiodic external disturbance; two-point oscillatory solution},
language = {eng},
number = {3},
pages = {395-414},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two-point oscillatory solutions to system with relay hysteresis and nonperiodic external disturbance},
url = {http://eudml.org/doc/299484},
volume = {69},
year = {2024},
}

TY - JOUR
AU - Kamachkin, Alexander M.
AU - Potapov, Dmitriy K.
AU - Yevstafyeva, Victoria V.
TI - Two-point oscillatory solutions to system with relay hysteresis and nonperiodic external disturbance
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 395
EP - 414
AB - We study an $n$-dimensional system of ordinary differential equations with a constant matrix, a relay-type nonlinearity, and an external disturbance in the right-hand side. We consider a nonideal relay characteristic. The external disturbance is described by the product of an exponential function and a sine function with an initial phase as a parameter. We assume the matrix of the linear part and the vector at the relay characteristic such that, by a nonsingular transformation, the system is reduced to the form with the diagonal matrix and the vector being opposite to the unit vector. We establish a necessary and sufficient condition for the existence of two-point oscillatory solutions, i.e., the solutions with two fixed points on the hyperplanes of the relay switching in phase space. Also, we give the sufficient conditions under which such solutions do not exist. We provide a supporting example, which demonstrates how to apply the obtained results.
LA - eng
KW - ODE system; relay hysteresis; nonperiodic external disturbance; two-point oscillatory solution
UR - http://eudml.org/doc/299484
ER -

References

top
  1. Andronov, A. A., Vitt, A. A., Khaikin, S. E., 10.1016/C2013-0-06631-5, International Series of Monographs in Physics 4. Pergamon Press, Oxford (1966). (1966) Zbl0188.56304MR0198734DOI10.1016/C2013-0-06631-5
  2. Arnold, M., Begun, N., Gurevich, P., Kwame, E., Lamba, H., Rachinskii, D., 10.1137/16M10735, SIAM J. Appl. Dyn. Syst. 16 (2017), 91-119. (2017) Zbl1361.37076MR3592068DOI10.1137/16M10735
  3. ström, K. J. Å, 10.1007/978-1-4419-8568-2_1, Adaptive Control, Filtering, and Signal Processing The IMA Volumes in Mathematics and Its Applications 74. Springer, New York (1995), 1-25. (1995) Zbl0829.93032MR1351012DOI10.1007/978-1-4419-8568-2_1
  4. Balanov, Z., Kravetc, P., Krawcewicz, W., Rachinskii, D., 10.1016/j.jde.2018.06.014, J. Differ. Equations 265 (2018), 4530-4574. (2018) Zbl1397.34121MR3843308DOI10.1016/j.jde.2018.06.014
  5. Bertotti, G., (Eds.), I. D. Mayergoyz, The Science of Hysteresis. Vol. I. Mathematical Modeling and Applications, Elsevier/Academic Press, Amsterdam (2006). (2006) Zbl1117.34045MR2307929
  6. Botkin, N. D., Brokate, M., Behi-Gornostaeva, E. G. El, 10.1016/j.physb.2015.08.039, Phys. B 486 (2016), 183-186. (2016) MR3797613DOI10.1016/j.physb.2015.08.039
  7. Brokate, M., Krejčí, P., 10.3934/dcds.2015.35.2405, Discrete Contin. Dyn. Syst. 35 (2015), 2405-2421. (2015) Zbl1338.47118MR3299005DOI10.3934/dcds.2015.35.2405
  8. Brokate, M., Sprekels, J., 10.1007/978-1-4612-4048-8, Applied Mathematical Sciences 121. Springer, New York (1996). (1996) Zbl0951.74002MR1411908DOI10.1007/978-1-4612-4048-8
  9. Burns, R. S., 10.1016/B978-0-7506-5100-4.X5000-1, Butterworth-Heinemann, Oxford (2001). (2001) DOI10.1016/B978-0-7506-5100-4.X5000-1
  10. Fang, L., Wang, J., Zhang, Q., 10.1007/s11071-014-1740-3, Nonlinear Dyn. 79 (2015), 1257-1273. (2015) Zbl1345.93046MR3302768DOI10.1007/s11071-014-1740-3
  11. Fursov, A. S., Mitrev, R. P., Krylov, P. A., Todorov, T. S., 10.1134/S0012266121080127, Differ. Equ. 57 (2021), 1076-1087. (2021) Zbl1471.93133MR4316860DOI10.1134/S0012266121080127
  12. Fursov, A. S., Todorov, T. S., Krylov, P. A., Mitrev, R. P., 10.1134/S0012266120080108, Differ. Equ. 56 (2020), 1081-1099. (2020) Zbl1451.34057MR4147119DOI10.1134/S0012266120080108
  13. Johansson, K. H., Rantzer, A., Åström, K. J., 10.1016/S0005-1098(98)00160-5, Automatica 35 (1999), 539-552. (1999) Zbl0934.93033DOI10.1016/S0005-1098(98)00160-5
  14. Kamachkin, A. M., Chitrov, G. M., Shamberov, V. N., 10.21638/11701/spbu10.2017.408, Vestn. St.-Peterbg. Univ. Prikl. Mat. Inform. Protsessy Upr. 13 (2017), 417-430 Russian. (2017) MR3750121DOI10.21638/11701/spbu10.2017.408
  15. Kamachkin, A. M., Potapov, D. K., Yevstafyeva, V. V., 10.1002/rnc.3567, Int. J. Robust Nonlinear Control 27 (2017), 204-211. (2017) Zbl1353.93055MR3594931DOI10.1002/rnc.3567
  16. Kamachkin, A. M., Potapov, D. K., Yevstafyeva, V. V., Existence of subharmonic solutions to a hysteresis system with sinusoidal external influence, Electron. J. Differ. Equ. 2017 (2017), Article ID 140, 10 pages. (2017) Zbl1370.34066MR3665602
  17. Kamachkin, A. M., Potapov, D. K., Yevstafyeva, V. V., 10.1007/s10883-017-9368-5, J. Dyn. Control Syst. 23 (2017), 825-837. (2017) Zbl1381.34083MR3688896DOI10.1007/s10883-017-9368-5
  18. Kamachkin, A. M., Potapov, D. K., Yevstafyeva, V. V., 10.21638/11701/spbu10.2020.210, Vestn. St.-Peterbg. Univ. Prikl. Mat. Inform. Protsessy Upr. 16 (2020), 186-199 Russian. (2020) MR4160031DOI10.21638/11701/spbu10.2020.210
  19. Kamachkin, A. M., Potapov, D. K., Yevstafyeva, V. V., 10.1080/00207179.2018.1562221, Int. J. Control 93 (2020), 763-770. (2020) Zbl1435.34048MR4077763DOI10.1080/00207179.2018.1562221
  20. Kamachkin, A. M., Potapov, D. K., Yevstafyeva, V. V., 10.21638/11701/spbu10.2021.209, Vestn. St.-Peterbg. Univ. Prikl. Mat. Inform. Protsessy Upr. 17 (2021), 196-212 Russian. (2021) MR4311880DOI10.21638/11701/spbu10.2021.209
  21. Kamachkin, A. M., Potapov, D. K., Yevstafyeva, V. V., 10.21136/AM.2021.0085-20, Appl. Math., Praha 67 (2022), 65-80. (2022) Zbl07478517MR4392405DOI10.21136/AM.2021.0085-20
  22. Kamachkin, A. M., Potapov, D. K., Yevstafyeva, V. V., 10.1134/S0012266122040024, Differ. Equ. 58 (2022), 455-467. (2022) Zbl1503.34093MR4464618DOI10.1134/S0012266122040024
  23. Krasnosel'skij, M. A., Pokrovskij, A. V., 10.1007/978-3-642-61302-9, Springer, Berlin (1989). (1989) Zbl0665.47038MR0987431DOI10.1007/978-3-642-61302-9
  24. Leonov, G. A., Shumafov, M. M., Teshev, V. A., Aleksandrov, K. D., 10.1134/S0012266117130055, Differ. Equ. 53 (2017), 1764-1816. (2017) Zbl1394.34004MR3804280DOI10.1134/S0012266117130055
  25. Macki, J. W., Nistri, P., Zecca, P., 10.1137/10350, SIAM Rev. 35 (1993), 94-123. (1993) Zbl0771.34018MR1207799DOI10.1137/10350
  26. Mayergoyz, I. D., 10.1016/B978-0-12-480873-7.X5000-2, Elsevier/Academic Press, Amsterdam (2003). (2003) MR1083150DOI10.1016/B978-0-12-480873-7.X5000-2
  27. McCarthy, S., Rachinskii, D., 10.21136/MB.2014.143636, Math. Bohem. 139 (2014), 39-73. (2014) Zbl1340.34163MR3231429DOI10.21136/MB.2014.143636
  28. Medvedskii, A. L., Meleshenko, P. A., Nesterov, V. A., Reshetova, O. O., Semenov, M. E., Solovyov, A. M., 10.1134/S1064230720030090, J. Comput. Syst. Sci. Int. 59 (2020), 533-556. (2020) Zbl1470.93128MR4431725DOI10.1134/S1064230720030090
  29. Paraskevopoulos, P. N., 10.1201/9781315214573, Control Engineering (Boca Raton) 10. Marcel Dekker, New York (2001). (2001) Zbl0986.93001DOI10.1201/9781315214573
  30. Pimenov, A., Rachinskii, D., 10.21136/MB.2014.143855, Math. Bohem. 139 (2014), 285-298. (2014) Zbl1349.47141MR3238840DOI10.21136/MB.2014.143855
  31. Pokrovskij, A. V., Existence and computation of stable modes in relay systems, Autom. Remote Control 47 (1986), 451-458. (1986) Zbl0604.93050MR0848397
  32. Potapov, D. K., Yevstafyeva, V. V., Lavrent'ev problem for separated flows with an external perturbation, Electron. J. Differ. Equ. 2013 (2013), Article ID 255, 6 pages. (2013) Zbl1290.35134MR3138830
  33. Rachinskii, D., 10.3934/dcdsb.2016.21.227, Discrete Contin. Dyn. Syst., Ser. B 21 (2016), 227-243. (2016) Zbl1330.34074MR3426841DOI10.3934/dcdsb.2016.21.227
  34. Solovyov, A. M., Semenov, M. E., Meleshenko, P. A., Reshetova, O. O., Popov, M. A., Kabulova, E. G., 10.1016/j.proeng.2017.09.634, Procedia Eng. 201 (2017), 578-583. (2017) DOI10.1016/j.proeng.2017.09.634
  35. Tsypkin, Ya. Z., Relay Control Systems, Cambridge University Press, Cambridge (1984). (1984) Zbl0571.93001MR0789077
  36. Varigonda, S., Georgiou, T. T., 10.1109/9.898696, IEEE Trans. Autom. Control 46 (2001), 65-77. (2001) Zbl1004.34034MR1809466DOI10.1109/9.898696
  37. Vasquez-Beltran, M. A., Jayawardhana, B., Peletier, R., 10.1109/LCSYS.2020.3009423, IEEE Control Syst. Lett. 5 (2021), 1061-1066. (2021) MR4211636DOI10.1109/LCSYS.2020.3009423
  38. Visintin, A., 10.1007/978-3-662-11557-2, Applied Mathematical Sciences 111. Springer, Berlin (1994). (1994) Zbl0820.35004MR1329094DOI10.1007/978-3-662-11557-2
  39. Visintin, A., 10.1007/s10440-014-9936-6, Acta Appl. Math. 132 (2014), 635-647. (2014) Zbl1305.74072MR3255072DOI10.1007/s10440-014-9936-6
  40. Visintin, A., 10.3934/dcdss.2015.8.793, Discrete Contin. Dyn. Syst., Ser. S 8 (2015), 793-816. (2015) Zbl1304.35357MR3356462DOI10.3934/dcdss.2015.8.793
  41. Yevstafyeva, V. V., 10.1134/S000511791506003X, Autom. Remote Control 76 (2015), 977-988. (2015) Zbl1327.93225MR3374789DOI10.1134/S000511791506003X
  42. Yevstafyeva, V. V., 10.1007/s11253-018-1566-0, Ukr. Math. J. 70 (2019), 1252-1263. (2019) Zbl1417.34098MR3863943DOI10.1007/s11253-018-1566-0
  43. Yevstafyeva, V. V., 10.1134/S0001434621030238, Math. Notes 109 (2021), 551-562. (2021) Zbl1472.34081MR4236227DOI10.1134/S0001434621030238
  44. Yevstafyeva, V. V., 10.1007/s11253-021-01957-4, Ukr. Math. J. 73 (2021), 746-757. (2021) Zbl1483.34061MR4466489DOI10.1007/s11253-021-01957-4
  45. Yevstafyeva, V. V., 10.1134/S001226612102004X, Differ. Equ. 57 (2021), 155-164. (2021) Zbl1464.34063MR4237004DOI10.1134/S001226612102004X
  46. Yu, C.-C., 10.1007/b137042, Advances in Industrial Control. Springer, Berlin (1999). (1999) Zbl0962.93004DOI10.1007/b137042

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.