Weaker convergence conditions for the secant method

Ioannis K. Argyros; Saïd Hilout

Applications of Mathematics (2014)

  • Volume: 59, Issue: 3, page 265-284
  • ISSN: 0862-7940

Abstract

top
We use tighter majorizing sequences than in earlier studies to provide a semilocal convergence analysis for the secant method. Our sufficient convergence conditions are also weaker. Numerical examples are provided where earlier conditions do not hold but for which the new conditions are satisfied.

How to cite

top

Argyros, Ioannis K., and Hilout, Saïd. "Weaker convergence conditions for the secant method." Applications of Mathematics 59.3 (2014): 265-284. <http://eudml.org/doc/261120>.

@article{Argyros2014,
abstract = {We use tighter majorizing sequences than in earlier studies to provide a semilocal convergence analysis for the secant method. Our sufficient convergence conditions are also weaker. Numerical examples are provided where earlier conditions do not hold but for which the new conditions are satisfied.},
author = {Argyros, Ioannis K., Hilout, Saïd},
journal = {Applications of Mathematics},
keywords = {semilocal convergence; secant method; Banach space; majorizing sequence; Hölder condition; divided difference; Fréchet-derivative; semilocal convergence; secant method; Banach space; majorizing sequence; Hölder condition; divided difference; Fréchet-derivative; numerical examples},
language = {eng},
number = {3},
pages = {265-284},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weaker convergence conditions for the secant method},
url = {http://eudml.org/doc/261120},
volume = {59},
year = {2014},
}

TY - JOUR
AU - Argyros, Ioannis K.
AU - Hilout, Saïd
TI - Weaker convergence conditions for the secant method
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 3
SP - 265
EP - 284
AB - We use tighter majorizing sequences than in earlier studies to provide a semilocal convergence analysis for the secant method. Our sufficient convergence conditions are also weaker. Numerical examples are provided where earlier conditions do not hold but for which the new conditions are satisfied.
LA - eng
KW - semilocal convergence; secant method; Banach space; majorizing sequence; Hölder condition; divided difference; Fréchet-derivative; semilocal convergence; secant method; Banach space; majorizing sequence; Hölder condition; divided difference; Fréchet-derivative; numerical examples
UR - http://eudml.org/doc/261120
ER -

References

top
  1. Argyros, I. K., 10.1016/j.jmaa.2004.04.008, J. Math. Anal. Appl. 298 (2004), 374-397. (2004) Zbl1061.47052MR2086964DOI10.1016/j.jmaa.2004.04.008
  2. Argyros, I. K., Convergence and Applications of Newton-Type Iterations, Springer New York (2008). (2008) Zbl1153.65057MR2428779
  3. Argyros, I. K., 10.1007/s10587-005-0013-1, Czech. Math. J. 55 (2005), 175-187. (2005) Zbl1081.65043MR2121665DOI10.1007/s10587-005-0013-1
  4. Argyros, I. K., 10.1016/j.cam.2004.01.029, J. Comput. Appl. Math. 169 (2004), 315-332. (2004) Zbl1055.65066MR2072881DOI10.1016/j.cam.2004.01.029
  5. Argyros, I. K., Cho, Y. J., Hilout, S., Numerical Methods for Equations and Its Applications, CRC Press Boca Raton (2012). (2012) Zbl1254.65068MR2964315
  6. Argyros, I. K., Hilout, S., Computational Methods in Nonlinear Analysis. Efficient Algorithms, Fixed Point Theory and Applications, World Scientific Hackensack (2013). (2013) Zbl1279.65062MR3134688
  7. Argyros, I. K., Hilout, S., 10.1007/s10587-010-0014-6, Czech. Math. J. 60 (2010), 253-272. (2010) Zbl1224.65141MR2595087DOI10.1007/s10587-010-0014-6
  8. Argyros, I. K., Hilout, S., Semilocal convergence conditions for the Secant method using recurrent functions, Rev. Anal. Numér. Théor. Approx. 40 (2011), 107-119. (2011) Zbl1289.65136MR3059816
  9. Argyros, I. K., Hilout, S., 10.1016/j.jco.2011.12.003, J. Complexity 28 (2012), 364-387. (2012) Zbl1245.65058MR2914733DOI10.1016/j.jco.2011.12.003
  10. Jr., W. E. Bosarge, Falb, P. L., A multipoint method of third order, J. Optimization Theory Appl. 4 (1969), 155-166. (1969) Zbl0172.18703MR0248581
  11. Jr., J. E. Dennis, Toward a Unified Convergence Theory for Newton-Like Methods, Nonlinear Functional Analysis and Applications, Proc. Adv. Sem. Math. Res. Center, Univ. Wisconsin 1970 L. B. Rall Publication No. 26 of the Mathematics Research Center the University of Wisconsin Academic Press, New York (1971), 425-472. (1971) Zbl0276.65029MR0278556
  12. Hernández, M. A., Rubio, M. J., Ezquerro, J. A., 10.1016/S0377-0427(99)00116-8, J. Comput. Appl. Math. 115 (2000), 245-254. (2000) MR1747223DOI10.1016/S0377-0427(99)00116-8
  13. Hernández, M. A., Rubio, M. J., Ezquerro, J. A., 10.1016/j.amc.2004.09.070, Appl. Math. Comput. 169 (2005), 926-942. (2005) Zbl1080.65044MR2174693DOI10.1016/j.amc.2004.09.070
  14. Kantorovich, L. V., Akilov, G. P., Functional Analysis, Pergamon Press. Transl. from the Russian by Howard L. Silcock. 2nd ed Oxford (1982). (1982) Zbl0484.46003MR0664597
  15. Laasonen, P., Ein überquadratisch konvergenter iterativer Algorithmus, Ann. Acad. Sci. Fenn., Ser. A I 450 (1969), 10 German. (1969) Zbl0193.11704MR0255047
  16. Ortega, J. M., Rheinboldt, W. C., Iterative Solution of Nonlinear Equations in Several Variables, Computer Science and Applied Mathematics Academic Press, New York (1970). (1970) Zbl0241.65046MR0273810
  17. Potra, F.-A., On the convergence of a class of Newton-like methods, Iterative Solution of Nonlinear Systems of Equations, Proc. Meeting, Oberwolfach 1982 Lecture Notes in Mathematics 953 Springer, Berlin (1982), 125-137. (1982) Zbl0507.65020MR0678615
  18. Potra, F.-A., Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985), 71-84. (1985) Zbl0581.47050MR0816258
  19. Potra, F.-A., Pták, V., Nondiscrete Induction and Iterative Processes, Research Notes in Mathematics 103 Pitman Advanced Publishing Program, Boston (1984). (1984) Zbl0549.41001MR0754338
  20. Potra, F.-A., Pták, V., 10.1007/BF01463998, Numer. Math. 34 (1980), 63-72. (1980) Zbl0434.65034MR0560794DOI10.1007/BF01463998
  21. Proinov, P. D., 10.1016/j.jco.2009.05.001, J. Complexity 26 (2010), 3-42. (2010) Zbl1185.65095MR2574570DOI10.1016/j.jco.2009.05.001
  22. Schmidt, J. W., 10.1007/BF02018090, Period. Math. Hung. 9 (1978), 241-247 German. (1978) Zbl0401.65036MR0494896DOI10.1007/BF02018090
  23. Wolfe, M. A., 10.1007/BF01397473, Numer. Math. 31 (1978), 153-174. (1978) Zbl0375.65030MR0509672DOI10.1007/BF01397473
  24. Yamamoto, T., 10.1007/BF01400355, Numer. Math. 51 (1987), 545-557. (1987) Zbl0633.65049MR0910864DOI10.1007/BF01400355

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.