Weaker convergence conditions for the secant method
Ioannis K. Argyros; Saïd Hilout
Applications of Mathematics (2014)
- Volume: 59, Issue: 3, page 265-284
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topArgyros, Ioannis K., and Hilout, Saïd. "Weaker convergence conditions for the secant method." Applications of Mathematics 59.3 (2014): 265-284. <http://eudml.org/doc/261120>.
@article{Argyros2014,
abstract = {We use tighter majorizing sequences than in earlier studies to provide a semilocal convergence analysis for the secant method. Our sufficient convergence conditions are also weaker. Numerical examples are provided where earlier conditions do not hold but for which the new conditions are satisfied.},
author = {Argyros, Ioannis K., Hilout, Saïd},
journal = {Applications of Mathematics},
keywords = {semilocal convergence; secant method; Banach space; majorizing sequence; Hölder condition; divided difference; Fréchet-derivative; semilocal convergence; secant method; Banach space; majorizing sequence; Hölder condition; divided difference; Fréchet-derivative; numerical examples},
language = {eng},
number = {3},
pages = {265-284},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weaker convergence conditions for the secant method},
url = {http://eudml.org/doc/261120},
volume = {59},
year = {2014},
}
TY - JOUR
AU - Argyros, Ioannis K.
AU - Hilout, Saïd
TI - Weaker convergence conditions for the secant method
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 3
SP - 265
EP - 284
AB - We use tighter majorizing sequences than in earlier studies to provide a semilocal convergence analysis for the secant method. Our sufficient convergence conditions are also weaker. Numerical examples are provided where earlier conditions do not hold but for which the new conditions are satisfied.
LA - eng
KW - semilocal convergence; secant method; Banach space; majorizing sequence; Hölder condition; divided difference; Fréchet-derivative; semilocal convergence; secant method; Banach space; majorizing sequence; Hölder condition; divided difference; Fréchet-derivative; numerical examples
UR - http://eudml.org/doc/261120
ER -
References
top- Argyros, I. K., 10.1016/j.jmaa.2004.04.008, J. Math. Anal. Appl. 298 (2004), 374-397. (2004) Zbl1061.47052MR2086964DOI10.1016/j.jmaa.2004.04.008
- Argyros, I. K., Convergence and Applications of Newton-Type Iterations, Springer New York (2008). (2008) Zbl1153.65057MR2428779
- Argyros, I. K., 10.1007/s10587-005-0013-1, Czech. Math. J. 55 (2005), 175-187. (2005) Zbl1081.65043MR2121665DOI10.1007/s10587-005-0013-1
- Argyros, I. K., 10.1016/j.cam.2004.01.029, J. Comput. Appl. Math. 169 (2004), 315-332. (2004) Zbl1055.65066MR2072881DOI10.1016/j.cam.2004.01.029
- Argyros, I. K., Cho, Y. J., Hilout, S., Numerical Methods for Equations and Its Applications, CRC Press Boca Raton (2012). (2012) Zbl1254.65068MR2964315
- Argyros, I. K., Hilout, S., Computational Methods in Nonlinear Analysis. Efficient Algorithms, Fixed Point Theory and Applications, World Scientific Hackensack (2013). (2013) Zbl1279.65062MR3134688
- Argyros, I. K., Hilout, S., 10.1007/s10587-010-0014-6, Czech. Math. J. 60 (2010), 253-272. (2010) Zbl1224.65141MR2595087DOI10.1007/s10587-010-0014-6
- Argyros, I. K., Hilout, S., Semilocal convergence conditions for the Secant method using recurrent functions, Rev. Anal. Numér. Théor. Approx. 40 (2011), 107-119. (2011) Zbl1289.65136MR3059816
- Argyros, I. K., Hilout, S., 10.1016/j.jco.2011.12.003, J. Complexity 28 (2012), 364-387. (2012) Zbl1245.65058MR2914733DOI10.1016/j.jco.2011.12.003
- Jr., W. E. Bosarge, Falb, P. L., A multipoint method of third order, J. Optimization Theory Appl. 4 (1969), 155-166. (1969) Zbl0172.18703MR0248581
- Jr., J. E. Dennis, Toward a Unified Convergence Theory for Newton-Like Methods, Nonlinear Functional Analysis and Applications, Proc. Adv. Sem. Math. Res. Center, Univ. Wisconsin 1970 L. B. Rall Publication No. 26 of the Mathematics Research Center the University of Wisconsin Academic Press, New York (1971), 425-472. (1971) Zbl0276.65029MR0278556
- Hernández, M. A., Rubio, M. J., Ezquerro, J. A., 10.1016/S0377-0427(99)00116-8, J. Comput. Appl. Math. 115 (2000), 245-254. (2000) MR1747223DOI10.1016/S0377-0427(99)00116-8
- Hernández, M. A., Rubio, M. J., Ezquerro, J. A., 10.1016/j.amc.2004.09.070, Appl. Math. Comput. 169 (2005), 926-942. (2005) Zbl1080.65044MR2174693DOI10.1016/j.amc.2004.09.070
- Kantorovich, L. V., Akilov, G. P., Functional Analysis, Pergamon Press. Transl. from the Russian by Howard L. Silcock. 2nd ed Oxford (1982). (1982) Zbl0484.46003MR0664597
- Laasonen, P., Ein überquadratisch konvergenter iterativer Algorithmus, Ann. Acad. Sci. Fenn., Ser. A I 450 (1969), 10 German. (1969) Zbl0193.11704MR0255047
- Ortega, J. M., Rheinboldt, W. C., Iterative Solution of Nonlinear Equations in Several Variables, Computer Science and Applied Mathematics Academic Press, New York (1970). (1970) Zbl0241.65046MR0273810
- Potra, F.-A., On the convergence of a class of Newton-like methods, Iterative Solution of Nonlinear Systems of Equations, Proc. Meeting, Oberwolfach 1982 Lecture Notes in Mathematics 953 Springer, Berlin (1982), 125-137. (1982) Zbl0507.65020MR0678615
- Potra, F.-A., Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985), 71-84. (1985) Zbl0581.47050MR0816258
- Potra, F.-A., Pták, V., Nondiscrete Induction and Iterative Processes, Research Notes in Mathematics 103 Pitman Advanced Publishing Program, Boston (1984). (1984) Zbl0549.41001MR0754338
- Potra, F.-A., Pták, V., 10.1007/BF01463998, Numer. Math. 34 (1980), 63-72. (1980) Zbl0434.65034MR0560794DOI10.1007/BF01463998
- Proinov, P. D., 10.1016/j.jco.2009.05.001, J. Complexity 26 (2010), 3-42. (2010) Zbl1185.65095MR2574570DOI10.1016/j.jco.2009.05.001
- Schmidt, J. W., 10.1007/BF02018090, Period. Math. Hung. 9 (1978), 241-247 German. (1978) Zbl0401.65036MR0494896DOI10.1007/BF02018090
- Wolfe, M. A., 10.1007/BF01397473, Numer. Math. 31 (1978), 153-174. (1978) Zbl0375.65030MR0509672DOI10.1007/BF01397473
- Yamamoto, T., 10.1007/BF01400355, Numer. Math. 51 (1987), 545-557. (1987) Zbl0633.65049MR0910864DOI10.1007/BF01400355
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.