Convergence conditions for Secant-type methods
Ioannis K. Argyros; Said Hilout
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 1, page 253-272
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topArgyros, Ioannis K., and Hilout, Said. "Convergence conditions for Secant-type methods." Czechoslovak Mathematical Journal 60.1 (2010): 253-272. <http://eudml.org/doc/38005>.
@article{Argyros2010,
abstract = {We provide new sufficient convergence conditions for the convergence of the secant-type methods to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses recurrent functions, and Lipschitz-type and center-Lipschitz-type instead of just Lipschitz-type conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than earlier ones and under our convergence hypotheses we can cover cases where earlier conditions are violated. Numerical examples are also provided.},
author = {Argyros, Ioannis K., Hilout, Said},
journal = {Czechoslovak Mathematical Journal},
keywords = {secant method; Banach space; majorizing sequence; divided difference; Fréchet-derivative; secant method; Banach space; majorizing sequence; divided difference; Fréchet-derivative; nonlinear operator equation; convergence; error bounds; numerical examples; Lipschitz-type conditions},
language = {eng},
number = {1},
pages = {253-272},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Convergence conditions for Secant-type methods},
url = {http://eudml.org/doc/38005},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Argyros, Ioannis K.
AU - Hilout, Said
TI - Convergence conditions for Secant-type methods
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 1
SP - 253
EP - 272
AB - We provide new sufficient convergence conditions for the convergence of the secant-type methods to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses recurrent functions, and Lipschitz-type and center-Lipschitz-type instead of just Lipschitz-type conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than earlier ones and under our convergence hypotheses we can cover cases where earlier conditions are violated. Numerical examples are also provided.
LA - eng
KW - secant method; Banach space; majorizing sequence; divided difference; Fréchet-derivative; secant method; Banach space; majorizing sequence; divided difference; Fréchet-derivative; nonlinear operator equation; convergence; error bounds; numerical examples; Lipschitz-type conditions
UR - http://eudml.org/doc/38005
ER -
References
top- Argyros, I. K., Polynomial operator equations in abstract spaces and applications, St. Lucie/CRC/Lewis Publ. Mathematics series, 1998, Boca Raton, Florida, U.S.A. Zbl0967.65070MR1731346
- Argyros, I. K., 10.1016/j.cam.2004.01.029, J. Comput. Appl. Math. 169 (2004), 315-332. (2004) Zbl1055.65066MR2072881DOI10.1016/j.cam.2004.01.029
- Argyros, I. K., 10.1016/j.jmaa.2004.04.008, J. Math. Anal. Appl. 298 (2004), 374-397. (2004) Zbl1061.47052MR2086964DOI10.1016/j.jmaa.2004.04.008
- Argyros, I. K., 10.1007/s10587-005-0013-1, Chechoslovak Math. J. 55 (2005), 175-187. (2005) Zbl1081.65043MR2121665DOI10.1007/s10587-005-0013-1
- Argyros, I. K., Convergence and Applications of Newton-Type Iterations, Springer-Verlag Publ., New-York (2008). (2008) Zbl1153.65057MR2428779
- Argyros, I. K., Hilout, S., Efficient Methods for Solving Equations and Variational Inequalities, Polimetrica Publisher (2009). (2009) MR2424657
- Bosarge, W. E., Falb, P. L., 10.1007/BF00930576, J. Optimiz. Th. Appl. 4 (1969), 156-166. (1969) Zbl0172.18703MR0248581DOI10.1007/BF00930576
- Chandrasekhar, S., Radiative Transfer, Dover Publ., New-York (1960). (1960) MR0111583
- Dennis, J. E., Toward a unified convergence theory for Newton-like methods, In Nonlinear Functional Analysis and Applications (L.B. Rall, ed.), Academic Press, New York (1971), 425-472. (1971) Zbl0276.65029MR0278556
- Hernández, M. A., Rubio, M. J., Ezquerro, J. A., 10.1016/j.amc.2004.09.070, Appl. Math. Cmput. 169 (2005), 926-942. (2005) MR2174693DOI10.1016/j.amc.2004.09.070
- Hernández, M. A., Rubio, M. J., Ezquerro, J. A., 10.1016/S0377-0427(99)00116-8, J. Comput. Appl. Math. 115 (2000), 245-254. (2000) MR1747223DOI10.1016/S0377-0427(99)00116-8
- Huang, Z., 10.1016/0377-0427(93)90004-U, J. Comput. Appl. Math. 47 (1993), 211-217. (1993) MR1237313DOI10.1016/0377-0427(93)90004-U
- Kantorovich, L. V., Akilov, G. P., Functional Analysis, Pergamon Press, Oxford (1982). (1982) Zbl0484.46003MR0664597
- Laasonen, P., Ein überquadratisch konvergenter iterativer Algorithmus, Ann. Acad. Sci. Fenn. Ser I 450 (1969), 1-10. (1969) Zbl0193.11704MR0255047
- Ortega, J. M., Rheinboldt, W. C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York (1970). (1970) Zbl0241.65046MR0273810
- Potra, F. A., Sharp error bounds for a class of Newton-like methods, Libertas Mathematica 5 (1985), 71-84. (1985) Zbl0581.47050MR0816258
- Schmidt, J. W., 10.1007/BF02018090, Period. Hungar. 9 (1978), 241-247. (1978) MR0494896DOI10.1007/BF02018090
- Yamamoto, T., 10.1007/BF01400355, Numer. Math. 51 (1987), 545-557. (1987) Zbl0633.65049MR0910864DOI10.1007/BF01400355
- Wolfe, M. A., 10.1007/BF01397473, Numer. Math. 31 (1978), 153-174. (1978) Zbl0375.65030MR0509672DOI10.1007/BF01397473
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.