On some consequences of a generalized continuity
Archivum Mathematicum (2014)
- Volume: 050, Issue: 2, page 107-114
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topDas, Pratulananda, and Savaş, Ekrem. "On some consequences of a generalized continuity." Archivum Mathematicum 050.2 (2014): 107-114. <http://eudml.org/doc/261144>.
@article{Das2014,
abstract = {In normed linear space settings, modifying the sequential definition of continuity of an operator by replacing the usual limit "$\lim $" with arbitrary linear regular summability methods $\bf \{G\}$ we consider the notion of a generalized continuity ($(\bf \{G_1\}, \bf \{G_2\}) $-continuity) and examine some of its consequences in respect of usual continuity and linearity of the operators between two normed linear spaces.},
author = {Das, Pratulananda, Savaş, Ekrem},
journal = {Archivum Mathematicum},
keywords = {continuity; $(\{\mathbf \{G_1\}\},\{\mathbf \{G_2\}\})$-continuity; homogeneous; linearity; conditions (NL1) and (NL2); normed space; continuity; $(\{\mathbf \{G_1\}\},\{\mathbf \{G_2\}\})$-continuity; homogeneous; linearity; conditions (NL1) and (NL2); normed space},
language = {eng},
number = {2},
pages = {107-114},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On some consequences of a generalized continuity},
url = {http://eudml.org/doc/261144},
volume = {050},
year = {2014},
}
TY - JOUR
AU - Das, Pratulananda
AU - Savaş, Ekrem
TI - On some consequences of a generalized continuity
JO - Archivum Mathematicum
PY - 2014
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 050
IS - 2
SP - 107
EP - 114
AB - In normed linear space settings, modifying the sequential definition of continuity of an operator by replacing the usual limit "$\lim $" with arbitrary linear regular summability methods $\bf {G}$ we consider the notion of a generalized continuity ($(\bf {G_1}, \bf {G_2}) $-continuity) and examine some of its consequences in respect of usual continuity and linearity of the operators between two normed linear spaces.
LA - eng
KW - continuity; $({\mathbf {G_1}},{\mathbf {G_2}})$-continuity; homogeneous; linearity; conditions (NL1) and (NL2); normed space; continuity; $({\mathbf {G_1}},{\mathbf {G_2}})$-continuity; homogeneous; linearity; conditions (NL1) and (NL2); normed space
UR - http://eudml.org/doc/261144
ER -
References
top- Antoni, J., On the A-continuity of real functions II, Math. Slovaca 36 (1986), no. 3, 283–287. (1986) MR0866628
- Antoni, J., Salat, T., On the A-continuity of real functions, Acta Math. Univ. Comenian 39 (1980), 159–164. (1980) Zbl0519.40006MR0619271
- Boos, J., Classical and Modern Methods in Summability, Oxford Univ. Press, Oxford, 2000. (2000) Zbl0954.40001MR1817226
- Borsik, J., Salat, T., On F -continuity of real functions, Tatra Mt. Math. Publ. 2 (1993), 37–42. (1993) Zbl0788.26004MR1251035
- Buck, R.C., Solution of problem 4216, Amer. Math. Monthly 55 (1948), 36. (1948) MR1526874
- Cakalli, H., 10.1016/j.aml.2007.07.011, Appl.Math. Lett. 21 (2008), no. 6, 594–598. (2008) Zbl1145.54001MR2412384DOI10.1016/j.aml.2007.07.011
- Cakalli, H., 10.1016/j.camwa.2010.11.006, Comput. Math. Appl. 61 (2011), 313–318. (2011) Zbl1211.40002MR2754139DOI10.1016/j.camwa.2010.11.006
- Cakalli, H., 10.1016/j.aml.2011.09.036, Appl. Math. Lett. 25 (2012), 461–465. (2012) Zbl1245.54021MR2856014DOI10.1016/j.aml.2011.09.036
- Cakalli, H., Das, P., 10.1016/j.aml.2009.05.015, Appl. Math. Lett. 22 (2009), no. 11, 1665–1669. (2009) Zbl1180.54010MR2569060DOI10.1016/j.aml.2009.05.015
- Connor, J., Grosse-Erdmann, K.-G., 10.1216/rmjm/1181069988, Rocky Mountain J. Math. 33 (2003), no. 1, 93–121. (2003) Zbl1040.26001MR1994482DOI10.1216/rmjm/1181069988
- Dik, M., Canak, I., New types of continuities, Abstr. Appl. Anal. 2010 (2010), p.6. DOI: http://dx.doi.org/10.1155/2010/258980 (2010) Zbl1192.26003MR2646690
- Iwinski, T.B., Some remarks on Toeplitz methods and continuity, Comment. Math. Prace Mat. 17 (1972), 37–43. (1972) Zbl0243.40005MR0322397
- Lahiri, B.K., Das, P., and convergence in topological spaces, Math. Bohemica 130 (2005), no. 2, 153–160. (2005) Zbl1111.40001MR2148648
- Maio, G.D., Kocinac, Lj.D.R., 10.1016/j.topol.2008.01.015, Topology Appl. 156 (2008), 28–45. (2008) Zbl1155.54004MR2463821DOI10.1016/j.topol.2008.01.015
- Posner, E.C., 10.1090/S0002-9939-1961-0121591-X, Proc. Amer. Math. Soc. 112 (1961), 73–76. (1961) Zbl0097.04602MR0121591DOI10.1090/S0002-9939-1961-0121591-X
- Robbins, H., Problem 4216, Amer. Math. Monthly 53 (1946), 470–471. (1946)
- Savas, E., Das, G., On the A-continuity of real functions, İstanbulÜniv. Fen Fak. Mat. Derg. 53 (1994), 61–66. (1994) MR1421240
- Spigel, E., Krupnik, N., On the -continuity of real functions, J. Anal. 2 (1994), 145–155. (1994) MR1281505
- Srinivasan, V.K., An equivalent condition for the continuity of a function, Texas J. Sci. 32 (1980), 176–177. (1980) MR0574766
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.