On some consequences of a generalized continuity

Pratulananda Das; Ekrem Savaş

Archivum Mathematicum (2014)

  • Volume: 050, Issue: 2, page 107-114
  • ISSN: 0044-8753

Abstract

top
In normed linear space settings, modifying the sequential definition of continuity of an operator by replacing the usual limit " lim " with arbitrary linear regular summability methods 𝐆 we consider the notion of a generalized continuity ( ( 𝐆 1 , 𝐆 2 ) -continuity) and examine some of its consequences in respect of usual continuity and linearity of the operators between two normed linear spaces.

How to cite

top

Das, Pratulananda, and Savaş, Ekrem. "On some consequences of a generalized continuity." Archivum Mathematicum 050.2 (2014): 107-114. <http://eudml.org/doc/261144>.

@article{Das2014,
abstract = {In normed linear space settings, modifying the sequential definition of continuity of an operator by replacing the usual limit "$\lim $" with arbitrary linear regular summability methods $\bf \{G\}$ we consider the notion of a generalized continuity ($(\bf \{G_1\}, \bf \{G_2\}) $-continuity) and examine some of its consequences in respect of usual continuity and linearity of the operators between two normed linear spaces.},
author = {Das, Pratulananda, Savaş, Ekrem},
journal = {Archivum Mathematicum},
keywords = {continuity; $(\{\mathbf \{G_1\}\},\{\mathbf \{G_2\}\})$-continuity; homogeneous; linearity; conditions (NL1) and (NL2); normed space; continuity; $(\{\mathbf \{G_1\}\},\{\mathbf \{G_2\}\})$-continuity; homogeneous; linearity; conditions (NL1) and (NL2); normed space},
language = {eng},
number = {2},
pages = {107-114},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On some consequences of a generalized continuity},
url = {http://eudml.org/doc/261144},
volume = {050},
year = {2014},
}

TY - JOUR
AU - Das, Pratulananda
AU - Savaş, Ekrem
TI - On some consequences of a generalized continuity
JO - Archivum Mathematicum
PY - 2014
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 050
IS - 2
SP - 107
EP - 114
AB - In normed linear space settings, modifying the sequential definition of continuity of an operator by replacing the usual limit "$\lim $" with arbitrary linear regular summability methods $\bf {G}$ we consider the notion of a generalized continuity ($(\bf {G_1}, \bf {G_2}) $-continuity) and examine some of its consequences in respect of usual continuity and linearity of the operators between two normed linear spaces.
LA - eng
KW - continuity; $({\mathbf {G_1}},{\mathbf {G_2}})$-continuity; homogeneous; linearity; conditions (NL1) and (NL2); normed space; continuity; $({\mathbf {G_1}},{\mathbf {G_2}})$-continuity; homogeneous; linearity; conditions (NL1) and (NL2); normed space
UR - http://eudml.org/doc/261144
ER -

References

top
  1. Antoni, J., On the A-continuity of real functions II, Math. Slovaca 36 (1986), no. 3, 283–287. (1986) MR0866628
  2. Antoni, J., Salat, T., On the A-continuity of real functions, Acta Math. Univ. Comenian 39 (1980), 159–164. (1980) Zbl0519.40006MR0619271
  3. Boos, J., Classical and Modern Methods in Summability, Oxford Univ. Press, Oxford, 2000. (2000) Zbl0954.40001MR1817226
  4. Borsik, J., Salat, T., On F -continuity of real functions, Tatra Mt. Math. Publ. 2 (1993), 37–42. (1993) Zbl0788.26004MR1251035
  5. Buck, R.C., Solution of problem 4216, Amer. Math. Monthly 55 (1948), 36. (1948) MR1526874
  6. Cakalli, H., 10.1016/j.aml.2007.07.011, Appl.Math. Lett. 21 (2008), no. 6, 594–598. (2008) Zbl1145.54001MR2412384DOI10.1016/j.aml.2007.07.011
  7. Cakalli, H., 10.1016/j.camwa.2010.11.006, Comput. Math. Appl. 61 (2011), 313–318. (2011) Zbl1211.40002MR2754139DOI10.1016/j.camwa.2010.11.006
  8. Cakalli, H., 10.1016/j.aml.2011.09.036, Appl. Math. Lett. 25 (2012), 461–465. (2012) Zbl1245.54021MR2856014DOI10.1016/j.aml.2011.09.036
  9. Cakalli, H., Das, P., 10.1016/j.aml.2009.05.015, Appl. Math. Lett. 22 (2009), no. 11, 1665–1669. (2009) Zbl1180.54010MR2569060DOI10.1016/j.aml.2009.05.015
  10. Connor, J., Grosse-Erdmann, K.-G., 10.1216/rmjm/1181069988, Rocky Mountain J. Math. 33 (2003), no. 1, 93–121. (2003) Zbl1040.26001MR1994482DOI10.1216/rmjm/1181069988
  11. Dik, M., Canak, I., New types of continuities, Abstr. Appl. Anal. 2010 (2010), p.6. DOI: http://dx.doi.org/10.1155/2010/258980 (2010) Zbl1192.26003MR2646690
  12. Iwinski, T.B., Some remarks on Toeplitz methods and continuity, Comment. Math. Prace Mat. 17 (1972), 37–43. (1972) Zbl0243.40005MR0322397
  13. Lahiri, B.K., Das, P., I and I * convergence in topological spaces, Math. Bohemica 130 (2005), no. 2, 153–160. (2005) Zbl1111.40001MR2148648
  14. Maio, G.D., Kocinac, Lj.D.R., 10.1016/j.topol.2008.01.015, Topology Appl. 156 (2008), 28–45. (2008) Zbl1155.54004MR2463821DOI10.1016/j.topol.2008.01.015
  15. Posner, E.C., 10.1090/S0002-9939-1961-0121591-X, Proc. Amer. Math. Soc. 112 (1961), 73–76. (1961) Zbl0097.04602MR0121591DOI10.1090/S0002-9939-1961-0121591-X
  16. Robbins, H., Problem 4216, Amer. Math. Monthly 53 (1946), 470–471. (1946) 
  17. Savas, E., Das, G., On the A-continuity of real functions, İstanbulÜniv. Fen Fak. Mat. Derg. 53 (1994), 61–66. (1994) MR1421240
  18. Spigel, E., Krupnik, N., On the A -continuity of real functions, J. Anal. 2 (1994), 145–155. (1994) MR1281505
  19. Srinivasan, V.K., An equivalent condition for the continuity of a function, Texas J. Sci. 32 (1980), 176–177. (1980) MR0574766

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.