On some classes of spaces with the D -property

Juan Carlos Martínez

Commentationes Mathematicae Universitatis Carolinae (2014)

  • Volume: 55, Issue: 2, page 247-256
  • ISSN: 0010-2628

Abstract

top
We shall prove that under CH every regular meta-Lindelöf P -space which is locally D has the D -property. In addition, we shall prove that a regular submeta-Lindelöf P -space is D if it is locally D and has locally extent at most ω 1 . Moreover, these results can be extended from the class of locally D -spaces to the wider class of 𝔻 -scattered spaces. Also, we shall give a direct proof (without using topological games) of the result shown by Peng [On spaces which are D, linearly D and transitively D, Topology Appl. 157 (2010), 378–384] which states that every weak θ ¯ -refinable 𝔻 -scattered space is D .

How to cite

top

Martínez, Juan Carlos. "On some classes of spaces with the $D$-property." Commentationes Mathematicae Universitatis Carolinae 55.2 (2014): 247-256. <http://eudml.org/doc/261869>.

@article{Martínez2014,
abstract = {We shall prove that under CH every regular meta-Lindelöf $P$-space which is locally $D$ has the $D$-property. In addition, we shall prove that a regular submeta-Lindelöf $P$-space is $D$ if it is locally $D$ and has locally extent at most $\omega _1$. Moreover, these results can be extended from the class of locally $D$-spaces to the wider class of $\mathbb \{D\}$-scattered spaces. Also, we shall give a direct proof (without using topological games) of the result shown by Peng [On spaces which are D, linearly D and transitively D, Topology Appl. 157 (2010), 378–384] which states that every weak $\overline\{\theta \}$-refinable $\mathbb \{D\}$-scattered space is $D$.},
author = {Martínez, Juan Carlos},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {property $D$; meta-Lindelöf; weak $\overline\{\theta \}$-refinable; $P$-space; scattered space; property ; meta-Lindelöf; weak -refinable; -space; scattered space},
language = {eng},
number = {2},
pages = {247-256},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On some classes of spaces with the $D$-property},
url = {http://eudml.org/doc/261869},
volume = {55},
year = {2014},
}

TY - JOUR
AU - Martínez, Juan Carlos
TI - On some classes of spaces with the $D$-property
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 2
SP - 247
EP - 256
AB - We shall prove that under CH every regular meta-Lindelöf $P$-space which is locally $D$ has the $D$-property. In addition, we shall prove that a regular submeta-Lindelöf $P$-space is $D$ if it is locally $D$ and has locally extent at most $\omega _1$. Moreover, these results can be extended from the class of locally $D$-spaces to the wider class of $\mathbb {D}$-scattered spaces. Also, we shall give a direct proof (without using topological games) of the result shown by Peng [On spaces which are D, linearly D and transitively D, Topology Appl. 157 (2010), 378–384] which states that every weak $\overline{\theta }$-refinable $\mathbb {D}$-scattered space is $D$.
LA - eng
KW - property $D$; meta-Lindelöf; weak $\overline{\theta }$-refinable; $P$-space; scattered space; property ; meta-Lindelöf; weak -refinable; -space; scattered space
UR - http://eudml.org/doc/261869
ER -

References

top
  1. Arhangel'skii A.V., 10.1090/S0002-9939-04-07336-8, Proc. Amer. Math. Soc. 132 (2004), 2163–2170. Zbl1045.54009MR2053991DOI10.1090/S0002-9939-04-07336-8
  2. Arhangel'skii A.V., Buzyakova R.Z., Addition theorems and D-spaces, Comment. Math. Univ. Carolin. 43 (2002), 653–663. Zbl1090.54017MR2045787
  3. Barr M., Kennison J.F., Raphael R., On productively Lindelöf spaces, Sci. Math. Jpn. 65 (2007), 319–332. Zbl1146.54013MR2328213
  4. Burke D.K., Covering properties, in Handbook of Set-Theoretic Topology, edited by K. Kunen and J.E. Vaughan, North-Holland, Elsevier, Amsterdam, 1984, pp. 347–422. Zbl0569.54022MR0776628
  5. Buzyakova R.Z, On D-property of strong Σ -spaces, Comment. Math. Univ. Carolin. 43 (2002), 493–495. Zbl1090.54018MR1920524
  6. van Douwen E.K., Lutzer D., 10.1090/S0002-9939-97-03902-6, Proc. Amer. Math. Soc. 125 (1997), 1237–1245. Zbl0885.54023MR1396999DOI10.1090/S0002-9939-97-03902-6
  7. van Douwen E.K., Pfeffer W.F., 10.2140/pjm.1979.81.371, Pacific J. Math. 81 (1979), 371–377. Zbl0409.54011MR0547605DOI10.2140/pjm.1979.81.371
  8. van Douwen E.K., Wicke H.H., A real, weird topology on the reals, Houston J. Math. 3 (1977), 141–152. Zbl0345.54036MR0433414
  9. Fleissner W.G, Stanley A.M., 10.1016/S0166-8641(00)00042-0, Topology Appl. 114 (2001), 261–271. Zbl0983.54024MR1838325DOI10.1016/S0166-8641(00)00042-0
  10. Gillman L., Jerison M., Rings of Continuous Functions, Graduate Texts in Math., 43, Springer, Berlin-Heidelberg-New York, 1976. Zbl0327.46040MR0407579
  11. Gruenhage G., 10.1090/conm/533/10502, Contemporary Math. 533 (2011), 13–28. Zbl1217.54025MR2777743DOI10.1090/conm/533/10502
  12. Martínez J. C., Soukup L., 10.1016/j.topol.2009.03.047, Topology Appl. 156 (2009), 3086-3090. Zbl1178.54009MR2556068DOI10.1016/j.topol.2009.03.047
  13. Martínez J.C., On finite unions and finite products with the D-property, Topology Appl. 158 (2011), 223–228. Zbl1206.54022MR2739893
  14. Mashburn J.D., A note on irreducibility and weak covering properties, Topology Proc. 9 (1984), 339–352. Zbl0577.54017MR0828991
  15. Peng L.-X., 10.1016/j.topol.2007.11.002, Topology Appl. 155 (2008), 522–526. Zbl1143.54013MR2388953DOI10.1016/j.topol.2007.11.002
  16. Peng L.-X., On spaces which are D, linearly D and transitively D, Topology Appl. 157 (2010), 378–384. Zbl1179.54035MR2563288
  17. Peng L.-X., 10.1016/j.topol.2011.12.004, Topology Appl. 159 (2012), 869–876. Zbl1247.54033MR2868887DOI10.1016/j.topol.2011.12.004
  18. Smith J.C., Properties of weak θ ¯ -refinable spaces, Proc. Amer. Math. Soc. 53 (1975), 511–517. Zbl0338.54013MR0380731
  19. Soukup D.T., Szeptycki P.J., 10.1016/j.topol.2012.03.016, Topology Appl. 159 (2012), 2669–2678. MR2923437DOI10.1016/j.topol.2012.03.016
  20. Zhang H., Shi W.-X., 10.1016/j.topol.2011.09.006, Topology Appl. 159 (2012), 248–252. Zbl1244.54058MR2852969DOI10.1016/j.topol.2011.09.006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.