On some classes of spaces with the -property
Commentationes Mathematicae Universitatis Carolinae (2014)
- Volume: 55, Issue: 2, page 247-256
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMartínez, Juan Carlos. "On some classes of spaces with the $D$-property." Commentationes Mathematicae Universitatis Carolinae 55.2 (2014): 247-256. <http://eudml.org/doc/261869>.
@article{Martínez2014,
abstract = {We shall prove that under CH every regular meta-Lindelöf $P$-space which is locally $D$ has the $D$-property. In addition, we shall prove that a regular submeta-Lindelöf $P$-space is $D$ if it is locally $D$ and has locally extent at most $\omega _1$. Moreover, these results can be extended from the class of locally $D$-spaces to the wider class of $\mathbb \{D\}$-scattered spaces. Also, we shall give a direct proof (without using topological games) of the result shown by Peng [On spaces which are D, linearly D and transitively D, Topology Appl. 157 (2010), 378–384] which states that every weak $\overline\{\theta \}$-refinable $\mathbb \{D\}$-scattered space is $D$.},
author = {Martínez, Juan Carlos},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {property $D$; meta-Lindelöf; weak $\overline\{\theta \}$-refinable; $P$-space; scattered space; property ; meta-Lindelöf; weak -refinable; -space; scattered space},
language = {eng},
number = {2},
pages = {247-256},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On some classes of spaces with the $D$-property},
url = {http://eudml.org/doc/261869},
volume = {55},
year = {2014},
}
TY - JOUR
AU - Martínez, Juan Carlos
TI - On some classes of spaces with the $D$-property
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 2
SP - 247
EP - 256
AB - We shall prove that under CH every regular meta-Lindelöf $P$-space which is locally $D$ has the $D$-property. In addition, we shall prove that a regular submeta-Lindelöf $P$-space is $D$ if it is locally $D$ and has locally extent at most $\omega _1$. Moreover, these results can be extended from the class of locally $D$-spaces to the wider class of $\mathbb {D}$-scattered spaces. Also, we shall give a direct proof (without using topological games) of the result shown by Peng [On spaces which are D, linearly D and transitively D, Topology Appl. 157 (2010), 378–384] which states that every weak $\overline{\theta }$-refinable $\mathbb {D}$-scattered space is $D$.
LA - eng
KW - property $D$; meta-Lindelöf; weak $\overline{\theta }$-refinable; $P$-space; scattered space; property ; meta-Lindelöf; weak -refinable; -space; scattered space
UR - http://eudml.org/doc/261869
ER -
References
top- Arhangel'skii A.V., 10.1090/S0002-9939-04-07336-8, Proc. Amer. Math. Soc. 132 (2004), 2163–2170. Zbl1045.54009MR2053991DOI10.1090/S0002-9939-04-07336-8
- Arhangel'skii A.V., Buzyakova R.Z., Addition theorems and D-spaces, Comment. Math. Univ. Carolin. 43 (2002), 653–663. Zbl1090.54017MR2045787
- Barr M., Kennison J.F., Raphael R., On productively Lindelöf spaces, Sci. Math. Jpn. 65 (2007), 319–332. Zbl1146.54013MR2328213
- Burke D.K., Covering properties, in Handbook of Set-Theoretic Topology, edited by K. Kunen and J.E. Vaughan, North-Holland, Elsevier, Amsterdam, 1984, pp. 347–422. Zbl0569.54022MR0776628
- Buzyakova R.Z, On D-property of strong -spaces, Comment. Math. Univ. Carolin. 43 (2002), 493–495. Zbl1090.54018MR1920524
- van Douwen E.K., Lutzer D., 10.1090/S0002-9939-97-03902-6, Proc. Amer. Math. Soc. 125 (1997), 1237–1245. Zbl0885.54023MR1396999DOI10.1090/S0002-9939-97-03902-6
- van Douwen E.K., Pfeffer W.F., 10.2140/pjm.1979.81.371, Pacific J. Math. 81 (1979), 371–377. Zbl0409.54011MR0547605DOI10.2140/pjm.1979.81.371
- van Douwen E.K., Wicke H.H., A real, weird topology on the reals, Houston J. Math. 3 (1977), 141–152. Zbl0345.54036MR0433414
- Fleissner W.G, Stanley A.M., 10.1016/S0166-8641(00)00042-0, Topology Appl. 114 (2001), 261–271. Zbl0983.54024MR1838325DOI10.1016/S0166-8641(00)00042-0
- Gillman L., Jerison M., Rings of Continuous Functions, Graduate Texts in Math., 43, Springer, Berlin-Heidelberg-New York, 1976. Zbl0327.46040MR0407579
- Gruenhage G., 10.1090/conm/533/10502, Contemporary Math. 533 (2011), 13–28. Zbl1217.54025MR2777743DOI10.1090/conm/533/10502
- Martínez J. C., Soukup L., 10.1016/j.topol.2009.03.047, Topology Appl. 156 (2009), 3086-3090. Zbl1178.54009MR2556068DOI10.1016/j.topol.2009.03.047
- Martínez J.C., On finite unions and finite products with the D-property, Topology Appl. 158 (2011), 223–228. Zbl1206.54022MR2739893
- Mashburn J.D., A note on irreducibility and weak covering properties, Topology Proc. 9 (1984), 339–352. Zbl0577.54017MR0828991
- Peng L.-X., 10.1016/j.topol.2007.11.002, Topology Appl. 155 (2008), 522–526. Zbl1143.54013MR2388953DOI10.1016/j.topol.2007.11.002
- Peng L.-X., On spaces which are D, linearly D and transitively D, Topology Appl. 157 (2010), 378–384. Zbl1179.54035MR2563288
- Peng L.-X., 10.1016/j.topol.2011.12.004, Topology Appl. 159 (2012), 869–876. Zbl1247.54033MR2868887DOI10.1016/j.topol.2011.12.004
- Smith J.C., Properties of weak -refinable spaces, Proc. Amer. Math. Soc. 53 (1975), 511–517. Zbl0338.54013MR0380731
- Soukup D.T., Szeptycki P.J., 10.1016/j.topol.2012.03.016, Topology Appl. 159 (2012), 2669–2678. MR2923437DOI10.1016/j.topol.2012.03.016
- Zhang H., Shi W.-X., 10.1016/j.topol.2011.09.006, Topology Appl. 159 (2012), 248–252. Zbl1244.54058MR2852969DOI10.1016/j.topol.2011.09.006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.