On D -property of strong Σ spaces

Raushan Z. Buzyakova

Commentationes Mathematicae Universitatis Carolinae (2002)

  • Volume: 43, Issue: 3, page 493-495
  • ISSN: 0010-2628

Abstract

top
It is shown that every strong Σ space is a D -space. In particular, it follows that every paracompact Σ space is a D -space.

How to cite

top

Buzyakova, Raushan Z.. "On $D$-property of strong $\Sigma $ spaces." Commentationes Mathematicae Universitatis Carolinae 43.3 (2002): 493-495. <http://eudml.org/doc/249010>.

@article{Buzyakova2002,
abstract = {It is shown that every strong $\Sigma $ space is a $D$-space. In particular, it follows that every paracompact $\Sigma $ space is a $D$-space.},
author = {Buzyakova, Raushan Z.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {strong $\Sigma $ space; $D$-space; -space; strong space},
language = {eng},
number = {3},
pages = {493-495},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On $D$-property of strong $\Sigma $ spaces},
url = {http://eudml.org/doc/249010},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Buzyakova, Raushan Z.
TI - On $D$-property of strong $\Sigma $ spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 3
SP - 493
EP - 495
AB - It is shown that every strong $\Sigma $ space is a $D$-space. In particular, it follows that every paracompact $\Sigma $ space is a $D$-space.
LA - eng
KW - strong $\Sigma $ space; $D$-space; -space; strong space
UR - http://eudml.org/doc/249010
ER -

References

top
  1. Arhangelskii A., private communications, 2001. 
  2. Borges C.R., Wehrly A.C., A study of D -spaces, Topology Proc. 16 (1991), 7-15. (1991) Zbl0787.54023MR1206448
  3. Borges C.R., Wehrly A.C., Another study of D -spaces, Questions Answers Gen. Topology 14:1 (1996), 73-76. (1996) Zbl0842.54033MR1384056
  4. Borges C.R., Wehrly A.C., Correction: another study of D -spaces, Questions Answers Gen. Topology 16:1 (1998), 77-78. (1998) MR1614761
  5. DeCaux P., Yet another property of the Sorgenfrey line, Topology Proc. 6:1 (1981), 31-43. (1981) MR0650479
  6. van Douwen E.K., Simultaneous extension of continuous functions, Thesis, Free University, Amsterdam, 1975. 
  7. van Douwen E.K., Pfeffer W.F., Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81 (1979), 371-377. (1979) Zbl0409.54011MR0547605
  8. van Douwen E.K., Lutzer D.J., A note on paracompactness in generalized ordered spaces, Proc. Amer. Math. Soc. 125 (1997), 1237-1245. (1997) Zbl0885.54023MR1396999
  9. Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989. Zbl0684.54001MR1039321
  10. Fleissner W.G., Stanley A.M., D -spaces, Topology Appl. 114 (2001), 261-271. (2001) Zbl0983.54024MR1838325

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.