Addition theorems and D -spaces

Aleksander V. Arhangel'skii; Raushan Z. Buzyakova

Commentationes Mathematicae Universitatis Carolinae (2002)

  • Volume: 43, Issue: 4, page 653-663
  • ISSN: 0010-2628

Abstract

top
It is proved that if a regular space X is the union of a finite family of metrizable subspaces then X is a D -space in the sense of E. van Douwen. It follows that if a regular space X of countable extent is the union of a finite collection of metrizable subspaces then X is Lindelöf. The proofs are based on a principal result of this paper: every space with a point-countable base is a D -space. Some other new results on the properties of spaces which are unions of a finite collection of nice subspaces are obtained.

How to cite

top

Arhangel'skii, Aleksander V., and Buzyakova, Raushan Z.. "Addition theorems and $D$-spaces." Commentationes Mathematicae Universitatis Carolinae 43.4 (2002): 653-663. <http://eudml.org/doc/249004>.

@article{Arhangelskii2002,
abstract = {It is proved that if a regular space $X$ is the union of a finite family of metrizable subspaces then $X$ is a $D$-space in the sense of E. van Douwen. It follows that if a regular space $X$ of countable extent is the union of a finite collection of metrizable subspaces then $X$ is Lindelöf. The proofs are based on a principal result of this paper: every space with a point-countable base is a $D$-space. Some other new results on the properties of spaces which are unions of a finite collection of nice subspaces are obtained.},
author = {Arhangel'skii, Aleksander V., Buzyakova, Raushan Z.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$D$-space; point-countable base; extent; metrizable space; Lindelöf space; -space; point-countable base; extent; metrizable space; Lindelöf space},
language = {eng},
number = {4},
pages = {653-663},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Addition theorems and $D$-spaces},
url = {http://eudml.org/doc/249004},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Arhangel'skii, Aleksander V.
AU - Buzyakova, Raushan Z.
TI - Addition theorems and $D$-spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 4
SP - 653
EP - 663
AB - It is proved that if a regular space $X$ is the union of a finite family of metrizable subspaces then $X$ is a $D$-space in the sense of E. van Douwen. It follows that if a regular space $X$ of countable extent is the union of a finite collection of metrizable subspaces then $X$ is Lindelöf. The proofs are based on a principal result of this paper: every space with a point-countable base is a $D$-space. Some other new results on the properties of spaces which are unions of a finite collection of nice subspaces are obtained.
LA - eng
KW - $D$-space; point-countable base; extent; metrizable space; Lindelöf space; -space; point-countable base; extent; metrizable space; Lindelöf space
UR - http://eudml.org/doc/249004
ER -

References

top
  1. Arens R., Dugundji J., Remark on the concept of compactness, Portugal. Math. 9 (1950), 141-143. (1950) Zbl0039.18602MR0038642
  2. Arhangel'skii A.V., Buzyakova R.Z., On some properties of linearly Lindelöf spaces, Topology Proc. 23 (1998), 1-11. (1998) Zbl0964.54018MR1800756
  3. Balogh Z., Gruenhage G., Tkachuk V., Additivity of metrizability and related properties, Topology Appl. 84 (1998), 91-103. (1998) Zbl0991.54032MR1611277
  4. Boone J.R., On irreducible spaces, 2, Pacific J. Math. 62.2 (1976), 351-357. (1976) MR0418037
  5. Borges C.R., Wehrly A.C., A study of D -spaces, Topology Proc. 16 (1991), 7-15. (1991) Zbl0787.54023MR1206448
  6. Burke D.K., Covering properties, in: K. Kunen and J. Vaughan, Eds, Handbook of Set-theoretic Topology, Chapter 9, pp.347-422; North-Holland, Amsterdam, New York, Oxford, 1984. Zbl0569.54022MR0776628
  7. Buzyakova R.Z., On D -property of strong Σ -spaces, Comment. Math. Univ. Carolinae 43.3 (2002), 493-495. (2002) Zbl1090.54018MR1920524
  8. de Caux P., A collectionwise normal, weakly θ -refinable Dowker space which is neither irreducible nor realcompact, Topology Proc. 1 (1976), 66-77. (1976) Zbl0397.54019
  9. Christian U., Concerning certain minimal cover refinable spaces, Fund. Math. 76 (1972), 213-222. (1972) MR0372818
  10. van Douwen E., Pfeffer W.F., Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81.2 (1979), 371-377. (1979) Zbl0409.54011MR0547605
  11. van Douwen E.K., Wicke H.H., A real, weird topology on reals, Houston J. Math. 13.1 (1977), 141-152. (1977) MR0433414
  12. Ismail M., Szymanski A., On the metrizability number and related invariants of spaces, 2, Topology Appl. 71.2 (1996), 179-191. (1996) MR1399555
  13. Ismail M., Szymanski A., On locally compact Hausdorff spaces with finite metrizability number, Topology Appl. 114.3 (2001), 285-293. (2001) Zbl1012.54002MR1838327
  14. Michael E., Rudin M.E., Another note on Eberlein compacts, Pacific J. Math. 72 (1977), 497-499. (1977) Zbl0344.54018MR0478093
  15. Ostaszewski A.J., Compact σ -metric spaces are sequential, Proc. Amer. Math. Soc. 68 (1978), 339-343. (1978) MR0467677
  16. Rudin M.E., Dowker spaces, in: K. Kunen and J. Vaughan, Eds, Handbook of Set-theoretic Topology, Chapter 17, pp.761-780; North-Holland, Amsterdam, New York, Oxford, 1984. Zbl0566.54009MR0776636
  17. Tkachenko M.G., On compactness of countably compact spaces having additional structure, Trans. Moscow Math. Soc. 2 (1984), 149-167. (1984) 
  18. Wicke H.H., Worrell J.M., Jr., Point-countability and compactness, Proc. Amer. Math. Soc. 55 (1976), 427-431. (1976) Zbl0323.54013MR0400166
  19. Worrell J.M., Wicke H.H., Characterizations of developable spaces, Canad. J. Math. 17 (1965), 820-830. (1965) MR0182945
  20. Worrell J.M., Jr., Wicke H.H., A covering property which implies isocompactness. 1, Proc. Amer. Math. Soc. 79.2 (1980), 331-334. (1980) MR0565365

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.