Addition theorems and -spaces
Aleksander V. Arhangel'skii; Raushan Z. Buzyakova
Commentationes Mathematicae Universitatis Carolinae (2002)
- Volume: 43, Issue: 4, page 653-663
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topArhangel'skii, Aleksander V., and Buzyakova, Raushan Z.. "Addition theorems and $D$-spaces." Commentationes Mathematicae Universitatis Carolinae 43.4 (2002): 653-663. <http://eudml.org/doc/249004>.
@article{Arhangelskii2002,
abstract = {It is proved that if a regular space $X$ is the union of a finite family of metrizable subspaces then $X$ is a $D$-space in the sense of E. van Douwen. It follows that if a regular space $X$ of countable extent is the union of a finite collection of metrizable subspaces then $X$ is Lindelöf. The proofs are based on a principal result of this paper: every space with a point-countable base is a $D$-space. Some other new results on the properties of spaces which are unions of a finite collection of nice subspaces are obtained.},
author = {Arhangel'skii, Aleksander V., Buzyakova, Raushan Z.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$D$-space; point-countable base; extent; metrizable space; Lindelöf space; -space; point-countable base; extent; metrizable space; Lindelöf space},
language = {eng},
number = {4},
pages = {653-663},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Addition theorems and $D$-spaces},
url = {http://eudml.org/doc/249004},
volume = {43},
year = {2002},
}
TY - JOUR
AU - Arhangel'skii, Aleksander V.
AU - Buzyakova, Raushan Z.
TI - Addition theorems and $D$-spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 4
SP - 653
EP - 663
AB - It is proved that if a regular space $X$ is the union of a finite family of metrizable subspaces then $X$ is a $D$-space in the sense of E. van Douwen. It follows that if a regular space $X$ of countable extent is the union of a finite collection of metrizable subspaces then $X$ is Lindelöf. The proofs are based on a principal result of this paper: every space with a point-countable base is a $D$-space. Some other new results on the properties of spaces which are unions of a finite collection of nice subspaces are obtained.
LA - eng
KW - $D$-space; point-countable base; extent; metrizable space; Lindelöf space; -space; point-countable base; extent; metrizable space; Lindelöf space
UR - http://eudml.org/doc/249004
ER -
References
top- Arens R., Dugundji J., Remark on the concept of compactness, Portugal. Math. 9 (1950), 141-143. (1950) Zbl0039.18602MR0038642
- Arhangel'skii A.V., Buzyakova R.Z., On some properties of linearly Lindelöf spaces, Topology Proc. 23 (1998), 1-11. (1998) Zbl0964.54018MR1800756
- Balogh Z., Gruenhage G., Tkachuk V., Additivity of metrizability and related properties, Topology Appl. 84 (1998), 91-103. (1998) Zbl0991.54032MR1611277
- Boone J.R., On irreducible spaces, 2, Pacific J. Math. 62.2 (1976), 351-357. (1976) MR0418037
- Borges C.R., Wehrly A.C., A study of -spaces, Topology Proc. 16 (1991), 7-15. (1991) Zbl0787.54023MR1206448
- Burke D.K., Covering properties, in: K. Kunen and J. Vaughan, Eds, Handbook of Set-theoretic Topology, Chapter 9, pp.347-422; North-Holland, Amsterdam, New York, Oxford, 1984. Zbl0569.54022MR0776628
- Buzyakova R.Z., On -property of strong -spaces, Comment. Math. Univ. Carolinae 43.3 (2002), 493-495. (2002) Zbl1090.54018MR1920524
- de Caux P., A collectionwise normal, weakly -refinable Dowker space which is neither irreducible nor realcompact, Topology Proc. 1 (1976), 66-77. (1976) Zbl0397.54019
- Christian U., Concerning certain minimal cover refinable spaces, Fund. Math. 76 (1972), 213-222. (1972) MR0372818
- van Douwen E., Pfeffer W.F., Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81.2 (1979), 371-377. (1979) Zbl0409.54011MR0547605
- van Douwen E.K., Wicke H.H., A real, weird topology on reals, Houston J. Math. 13.1 (1977), 141-152. (1977) MR0433414
- Ismail M., Szymanski A., On the metrizability number and related invariants of spaces, 2, Topology Appl. 71.2 (1996), 179-191. (1996) MR1399555
- Ismail M., Szymanski A., On locally compact Hausdorff spaces with finite metrizability number, Topology Appl. 114.3 (2001), 285-293. (2001) Zbl1012.54002MR1838327
- Michael E., Rudin M.E., Another note on Eberlein compacts, Pacific J. Math. 72 (1977), 497-499. (1977) Zbl0344.54018MR0478093
- Ostaszewski A.J., Compact -metric spaces are sequential, Proc. Amer. Math. Soc. 68 (1978), 339-343. (1978) MR0467677
- Rudin M.E., Dowker spaces, in: K. Kunen and J. Vaughan, Eds, Handbook of Set-theoretic Topology, Chapter 17, pp.761-780; North-Holland, Amsterdam, New York, Oxford, 1984. Zbl0566.54009MR0776636
- Tkachenko M.G., On compactness of countably compact spaces having additional structure, Trans. Moscow Math. Soc. 2 (1984), 149-167. (1984)
- Wicke H.H., Worrell J.M., Jr., Point-countability and compactness, Proc. Amer. Math. Soc. 55 (1976), 427-431. (1976) Zbl0323.54013MR0400166
- Worrell J.M., Wicke H.H., Characterizations of developable spaces, Canad. J. Math. 17 (1965), 820-830. (1965) MR0182945
- Worrell J.M., Jr., Wicke H.H., A covering property which implies isocompactness. 1, Proc. Amer. Math. Soc. 79.2 (1980), 331-334. (1980) MR0565365
Citations in EuDML Documents
top- Liang-Xue Peng, On weakly monotonically monolithic spaces
- Shou Lin, A note on D-spaces
- Dennis K. Burke, Weak-bases and -spaces
- Juan Carlos Martínez, On some classes of spaces with the -property
- A. D. Rojas-Sánchez, Angel Tamariz-Mascarúa, Spaces with star countable extent
- Ofelia Teresa Alas, Vladimir Vladimirovich Tkachuk, Richard Gordon Wilson, Addition theorems, -spaces and dually discrete spaces
- Liang-Xue Peng, A note on transitively -spaces
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.