Systems of reaction-diffusion equations with spatially distributed hysteresis

Pavel Gurevich; Sergey Tikhomirov

Mathematica Bohemica (2014)

  • Volume: 139, Issue: 2, page 239-257
  • ISSN: 0862-7959

Abstract

top
We study systems of reaction-diffusion equations with discontinuous spatially distributed hysteresis on the right-hand side. The input of the hysteresis is given by a vector-valued function of space and time. Such systems describe hysteretic interaction of non-diffusive (bacteria, cells, etc.) and diffusive (nutrient, proteins, etc.) substances leading to formation of spatial patterns. We provide sufficient conditions under which the problem is well posed in spite of the assumed discontinuity of hysteresis. These conditions are formulated in terms of geometry of the manifolds defining the hysteresis thresholds and the spatial profile of the initial data.

How to cite

top

Gurevich, Pavel, and Tikhomirov, Sergey. "Systems of reaction-diffusion equations with spatially distributed hysteresis." Mathematica Bohemica 139.2 (2014): 239-257. <http://eudml.org/doc/261916>.

@article{Gurevich2014,
abstract = {We study systems of reaction-diffusion equations with discontinuous spatially distributed hysteresis on the right-hand side. The input of the hysteresis is given by a vector-valued function of space and time. Such systems describe hysteretic interaction of non-diffusive (bacteria, cells, etc.) and diffusive (nutrient, proteins, etc.) substances leading to formation of spatial patterns. We provide sufficient conditions under which the problem is well posed in spite of the assumed discontinuity of hysteresis. These conditions are formulated in terms of geometry of the manifolds defining the hysteresis thresholds and the spatial profile of the initial data.},
author = {Gurevich, Pavel, Tikhomirov, Sergey},
journal = {Mathematica Bohemica},
keywords = {spatially distributed hysteresis; reaction-diffusion equation; well-posedness; spatially distributed hysteresis; reaction-diffusion equation; well-posedness},
language = {eng},
number = {2},
pages = {239-257},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Systems of reaction-diffusion equations with spatially distributed hysteresis},
url = {http://eudml.org/doc/261916},
volume = {139},
year = {2014},
}

TY - JOUR
AU - Gurevich, Pavel
AU - Tikhomirov, Sergey
TI - Systems of reaction-diffusion equations with spatially distributed hysteresis
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 2
SP - 239
EP - 257
AB - We study systems of reaction-diffusion equations with discontinuous spatially distributed hysteresis on the right-hand side. The input of the hysteresis is given by a vector-valued function of space and time. Such systems describe hysteretic interaction of non-diffusive (bacteria, cells, etc.) and diffusive (nutrient, proteins, etc.) substances leading to formation of spatial patterns. We provide sufficient conditions under which the problem is well posed in spite of the assumed discontinuity of hysteresis. These conditions are formulated in terms of geometry of the manifolds defining the hysteresis thresholds and the spatial profile of the initial data.
LA - eng
KW - spatially distributed hysteresis; reaction-diffusion equation; well-posedness; spatially distributed hysteresis; reaction-diffusion equation; well-posedness
UR - http://eudml.org/doc/261916
ER -

References

top
  1. Aiki, T., Kopfová, J., A mathematical model for bacterial growth described by a hysteresis operator, Recent Advances in Nonlinear Analysis Proceedings of the international conference on nonlinear analysis M. Chipot World Scientific, Hackensack 1-10 (2008). (2008) MR2410735
  2. Alt, H. W., On the thermostat problem, Control Cybern. 14 (1985), 171-193. (1985) MR0839520
  3. Apushinskaya, D. E., Uraltseva, N. N., Shahgholian, H., 10.1090/S1061-0022-04-00813-1, St. Petersburg Math. J. 15 (2004), 375-391. (2004) MR2052937DOI10.1090/S1061-0022-04-00813-1
  4. Gurevich, P., Shamin, R., Tikhomirov, S., 10.1137/120879889, SIAM J. Math. Anal. 45 (2013), 1328-1355. (2013) Zbl1276.35107MR3054588DOI10.1137/120879889
  5. Gurevich, P., Tikhomirov, S., 10.1016/j.na.2012.08.003, Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 6610-6619. (2012) Zbl1252.35009MR2965244DOI10.1016/j.na.2012.08.003
  6. Hoppensteadt, F. C., Jäger, W., 10.1007/978-3-642-61850-5_7, Lecture Notes in Biomath. 38 W. Jäger, H. Rost, P. Tautu (1980), 68-81 Springer, Berlin. (1980) Zbl0437.92023MR0609347DOI10.1007/978-3-642-61850-5_7
  7. Hoppensteadt, F. C., Jäger, W., Pöppe, C., 10.1007/978-3-642-45589-6_11, Lecture Notes in Biomath. 55 W. Jäger, J. D. Murray (1984), 123-134 Springer, Berlin. (1984) MR0813709DOI10.1007/978-3-642-45589-6_11
  8. Il'in, A. M., Markov, B. A., Nonlinear diffusion equation and Liesegang rings, Dokl. Math. 84 (2011), 730-733 Translated from Dokl. Akad. Nauk 440 (2011), 164-167 Russian. (2011) Zbl1234.35292MR2919131
  9. Ivasishen, S. D., Green's matrices of boundary value problems for systems of a general form that are parabolic in the sense of I. G. Petrovskii. II, Mat. Sb., N. Ser. 114 (1981), 523-565. (1981) MR0615340
  10. Klein, O., Representation of hysteresis operators acting on vector-valued monotaffine functions, Adv. Math. Sci. Appl. 22 (2012), 471-500. (2012) MR3100006
  11. Kopfová, J., Hysteresis in biological models, Journal of Physics M. P. Mortell, R. E. O'Malley, A. V. Pokrovskii, V. A. Sobolev Proceedings of ``International Workshop on Multi-Rate Processess and Hysteresis'', Conference Series 55 130-134 (2007). (2007) 
  12. Krasnosel'skii, M. A., Pokrovskii, A. V., Systems with Hysteresis, Translated from the Russian. Springer, Berlin (1989). (1989) Zbl0665.47038MR0987431
  13. Ladyzhenskaya, O. A., Solonnikov, V. A., Uraltseva, N. N., Linear and Quasilinear Equations of Parabolic Type, Russian Nauka, Moskva (1967). (1967) 
  14. Rothe, F., 10.1007/BFb0099278, Lecture Notes in Mathematics 1072 Springer, Berlin (1984). (1984) Zbl0546.35003MR0755878DOI10.1007/BFb0099278
  15. Shahgholian, H., Uraltseva, N., Weiss, G. S., 10.1016/j.aim.2009.01.011, Adv. Math. 221 (2009), 861-881. (2009) Zbl1168.35452MR2511041DOI10.1016/j.aim.2009.01.011
  16. Smoller, J., 10.1007/978-1-4612-0873-0_14, Grundlehren der Mathematischen Wissenschaften 258 Springer, New York (1994). (1994) Zbl0807.35002MR1301779DOI10.1007/978-1-4612-0873-0_14
  17. Visintin, A., 10.1137/0517079, SIAM J. Math. Anal. 17 (1986), 1113-1138. (1986) Zbl0618.35053MR0853520DOI10.1137/0517079
  18. Visintin, A., 10.1007/978-3-662-11557-2, Applied Mathematical Sciences 111 Springer, Berlin (1994). (1994) Zbl0820.35004MR1329094DOI10.1007/978-3-662-11557-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.