Homogenization of a carcinogenesis model with different scalings with the homogenization parameter

Isabell Graf; Malte A. Peter

Mathematica Bohemica (2014)

  • Volume: 139, Issue: 2, page 163-184
  • ISSN: 0862-7959

Abstract

top
In the context of periodic homogenization based on two-scale convergence, we homogenize a linear system of four coupled reaction-diffusion equations, two of which are defined on a manifold. The system describes the most important subprocesses modeling the carcinogenesis of a human cell caused by Benzo-[a]-pyrene molecules. These molecules are activated to carcinogens in a series of chemical reactions at the surface of the endoplasmic reticulum, which constitutes a fine structure inside the cell. The diffusion on the endoplasmic reticulum, modeled as a Riemannian manifold, is described by the Laplace-Beltrami operator. For the binding process to the surface of the endoplasmic reticulum, different scalings with powers of the homogenization parameter are considered. This leads to three qualitatively different models in the homogenization limit.

How to cite

top

Graf, Isabell, and Peter, Malte A.. "Homogenization of a carcinogenesis model with different scalings with the homogenization parameter." Mathematica Bohemica 139.2 (2014): 163-184. <http://eudml.org/doc/261919>.

@article{Graf2014,
abstract = {In the context of periodic homogenization based on two-scale convergence, we homogenize a linear system of four coupled reaction-diffusion equations, two of which are defined on a manifold. The system describes the most important subprocesses modeling the carcinogenesis of a human cell caused by Benzo-[a]-pyrene molecules. These molecules are activated to carcinogens in a series of chemical reactions at the surface of the endoplasmic reticulum, which constitutes a fine structure inside the cell. The diffusion on the endoplasmic reticulum, modeled as a Riemannian manifold, is described by the Laplace-Beltrami operator. For the binding process to the surface of the endoplasmic reticulum, different scalings with powers of the homogenization parameter are considered. This leads to three qualitatively different models in the homogenization limit.},
author = {Graf, Isabell, Peter, Malte A.},
journal = {Mathematica Bohemica},
keywords = {periodic homogenization; two-scale convergence; carcinogenesis; reaction-diffusion system; surface diffusion; periodic homogenization; two-scale convergence; carcinogenesis; reaction-diffusion system; surface diffusion},
language = {eng},
number = {2},
pages = {163-184},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Homogenization of a carcinogenesis model with different scalings with the homogenization parameter},
url = {http://eudml.org/doc/261919},
volume = {139},
year = {2014},
}

TY - JOUR
AU - Graf, Isabell
AU - Peter, Malte A.
TI - Homogenization of a carcinogenesis model with different scalings with the homogenization parameter
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 2
SP - 163
EP - 184
AB - In the context of periodic homogenization based on two-scale convergence, we homogenize a linear system of four coupled reaction-diffusion equations, two of which are defined on a manifold. The system describes the most important subprocesses modeling the carcinogenesis of a human cell caused by Benzo-[a]-pyrene molecules. These molecules are activated to carcinogens in a series of chemical reactions at the surface of the endoplasmic reticulum, which constitutes a fine structure inside the cell. The diffusion on the endoplasmic reticulum, modeled as a Riemannian manifold, is described by the Laplace-Beltrami operator. For the binding process to the surface of the endoplasmic reticulum, different scalings with powers of the homogenization parameter are considered. This leads to three qualitatively different models in the homogenization limit.
LA - eng
KW - periodic homogenization; two-scale convergence; carcinogenesis; reaction-diffusion system; surface diffusion; periodic homogenization; two-scale convergence; carcinogenesis; reaction-diffusion system; surface diffusion
UR - http://eudml.org/doc/261919
ER -

References

top
  1. Allaire, G., 10.1137/0523084, SIAM J. Math. Anal. 23 1482-1518 (1992). (1992) Zbl0770.35005MR1185639DOI10.1137/0523084
  2. Bakhvalov, N. S., Panasenko, G., Homogenization: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials, Translated from the Russian. Mathematics and Its Applications: Soviet Series 36 Kluwer Academic Publishers, Dordrecht (1989). (1989) MR1112788
  3. Bensoussan, A., Lions, J.-L., Papanicolaou, G., Asymptotic Analysis for Periodic Structures, Studies in Mathematics and its Applications 5 North-Holland Publ. Company, Amsterdam (1978). (1978) Zbl0404.35001MR0503330
  4. Besong, D. O., Mathematical Modelling and Numerical Solution of Chemical Reactions and Diffusion of Carcinogenic Compounds in Cells, KTH Numerical Analysis and Computer Science TRITA NA E04152, Stockholm (2004). (2004) 
  5. Canon, É., Pernin, J.-N., Homogenization of diffusion in composite media with interfacial barrier, Rev. Roum. Math. Pures Appl. 44 23-36 (1999). (1999) Zbl0994.35023MR1841959
  6. Cioranescu, D., Donato, P., An Introduction to Homogenization, Oxford Lecture Series in Mathematics and Its Applications 17 Oxford University Press, Oxford (1999). (1999) Zbl0939.35001MR1765047
  7. Davies, E. B., Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics 92 Cambridge University Press, Cambridge (1989). (1989) Zbl0699.35006MR0990239
  8. Carmo, M. P. do, Riemannian Geometry, Translated from the Portuguese. Mathematics: Theory & Applications Birkhäuser, Boston (1992). (1992) Zbl0752.53001MR1138207
  9. Evans, L. C., 10.1090/gsm/019/02, Graduate Studies in Mathematics 19 American Mathematical Society, Providence (2010). (2010) Zbl1194.35001MR2597943DOI10.1090/gsm/019/02
  10. Gelboin, H. V., 10.1152/physrev.1980.60.4.1107, Physiological Reviews 60 1107-1166 (1980). (1980) DOI10.1152/physrev.1980.60.4.1107
  11. Gossauer, A., Struktur und Reaktivität der Biomoleküle, Willey-VCH-Verlag Weinheim (2003), German. (2003) 
  12. Graf, I., Peter, M. A., Diffusion on surfaces and the boundary periodic unfolding operator with an application to carcinogenesis in human cells, SIAM J. Math. Anal. Accepted. 
  13. Jiang, H., Gelhaus, S. L., Mangal, D., Harvey, R. G., Blair, I. A., Penning, T. M., 10.1021/tx700107z, Chem. Res. Toxicol. 20 1331-1341 (2007). (2007) DOI10.1021/tx700107z
  14. Jikov, V. V., Kozlov, S. M., Oleinik, O. A., Homogenization of Differential Operators and Integral Functionals. Translated from the Russian, Springer, Berlin (1994). (1994) MR1329546
  15. Marchenko, V. A., Khruslov, E. Ya., Homogenization of Partial Differential Equations, Translated from the Russian. Progress in Mathematical Physics 46 Birkhäuser, Boston (2006). (2006) Zbl1113.35003MR2182441
  16. Neuss-Radu, M., Some extensions of two-scale convergence, C. R. Acad. Sci., Paris, Sér. I 322 899-904 (1996). (1996) Zbl0852.76087MR1390613
  17. Nguetseng, G., 10.1137/0520043, SIAM J. Math. Anal. 20 608-623 (1989). (1989) Zbl0688.35007MR0990867DOI10.1137/0520043
  18. Pelkonen, O., Nebert, D. W., Metabolism of polycyclic aromatic hydrocarbons: Etiologic role in carcinogenesis, Pharmacological Reviews 34 189-212 (1982). (1982) 
  19. Peter, M. A., 10.1016/j.na.2008.01.011, Nonlinear Anal. 70 806-821 (2009). (2009) Zbl1151.35308MR2468421DOI10.1016/j.na.2008.01.011
  20. Peter, M. A., Böhm, M., Scalings in homogenisation of reaction, diffusion and interfacial exchange in a two-phase medium, Proceedings of Equadiff 11 International Conference on Differential Equations, Czecho-Slovak series Bratislava 369-376 (2005). (2005) 
  21. Peter, M. A., Böhm, M., 10.1002/mma.966, Math. Methods Appl. Sci. 31 1257-1282 (2008). (2008) MR2431426DOI10.1002/mma.966
  22. Peter, M. A., Böhm, M., 10.1137/070706410, Multiscale Model. Simul. 7 1643-1668 (2009). (2009) Zbl1181.35019MR2505062DOI10.1137/070706410
  23. Phillips, D. H., 10.1038/303468a0, Nature 303 468-472 (1983). (1983) DOI10.1038/303468a0
  24. Sanchez-Palencia, E., Non-homogeneous Media and Vibration Theory, Lecture Notes in Physics 127 Springer, Berlin (1980). (1980) Zbl0432.70002MR0578345
  25. Showalter, R. E., 10.1007/978-1-4612-1920-0_9, Homogenization and Porous Media U. Hornung Interdisciplinary Applied Mathematics 6 Springer, New York 183-202 (1997). (1997) MR1434324DOI10.1007/978-1-4612-1920-0_9
  26. Showalter, R. E., Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs 49 American Mathematical Society, Providence (1997). (1997) Zbl0870.35004MR1422252
  27. Sims, P., Grover, P. L., Swaisland, A., Pal, K., Hewer, A., 10.1038/252326a0, Nature 252 326-328 (1974). (1974) DOI10.1038/252326a0
  28. Wloka, J., Partial Differential Equations, Translated from the German. Cambridge University Press, Cambridge (1987). (1987) Zbl0623.35006MR0895589

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.