Constrained robust adaptive stabilization for a class of lower triangular systems with unknown control direction

Jianglin Lan; Weijie Sun; Yunjian Peng

Kybernetika (2014)

  • Volume: 50, Issue: 3, page 450-469
  • ISSN: 0023-5954

Abstract

top
This paper studies the constrained robust adaptive stabilization problem for a class of lower triangular systems with unknown control direction. A robust adaptive feedback control law for the systems is proposed by incorporating the technique of Barrier Lyapunov Function with Nussbaum gain. Such a controlled system arises from the study of the constrained robust output regulation problem for a class of output feedback systems with the unknown control direction and a nonlinear exosystem. An application of the constrained robust adaptive stabilization design leads to the solution of the constrained robust output regulation problem in the sense that the output tracking error is constrained within the prescribed barrier limit while asymptotically approaching to zero and the closed loop signals are all bounded for all the time. A numerical example is provided to illustrate the performance of the proposed control.

How to cite

top

Lan, Jianglin, Sun, Weijie, and Peng, Yunjian. "Constrained robust adaptive stabilization for a class of lower triangular systems with unknown control direction." Kybernetika 50.3 (2014): 450-469. <http://eudml.org/doc/261920>.

@article{Lan2014,
abstract = {This paper studies the constrained robust adaptive stabilization problem for a class of lower triangular systems with unknown control direction. A robust adaptive feedback control law for the systems is proposed by incorporating the technique of Barrier Lyapunov Function with Nussbaum gain. Such a controlled system arises from the study of the constrained robust output regulation problem for a class of output feedback systems with the unknown control direction and a nonlinear exosystem. An application of the constrained robust adaptive stabilization design leads to the solution of the constrained robust output regulation problem in the sense that the output tracking error is constrained within the prescribed barrier limit while asymptotically approaching to zero and the closed loop signals are all bounded for all the time. A numerical example is provided to illustrate the performance of the proposed control.},
author = {Lan, Jianglin, Sun, Weijie, Peng, Yunjian},
journal = {Kybernetika},
keywords = {Barrier Lyapunov Function; output regulation; nonlinear exosystem; Nussbaum gain; barrier Lyapunov function; output regulation; nonlinear exosystem; Nussbaum gain},
language = {eng},
number = {3},
pages = {450-469},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Constrained robust adaptive stabilization for a class of lower triangular systems with unknown control direction},
url = {http://eudml.org/doc/261920},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Lan, Jianglin
AU - Sun, Weijie
AU - Peng, Yunjian
TI - Constrained robust adaptive stabilization for a class of lower triangular systems with unknown control direction
JO - Kybernetika
PY - 2014
PB - Institute of Information Theory and Automation AS CR
VL - 50
IS - 3
SP - 450
EP - 469
AB - This paper studies the constrained robust adaptive stabilization problem for a class of lower triangular systems with unknown control direction. A robust adaptive feedback control law for the systems is proposed by incorporating the technique of Barrier Lyapunov Function with Nussbaum gain. Such a controlled system arises from the study of the constrained robust output regulation problem for a class of output feedback systems with the unknown control direction and a nonlinear exosystem. An application of the constrained robust adaptive stabilization design leads to the solution of the constrained robust output regulation problem in the sense that the output tracking error is constrained within the prescribed barrier limit while asymptotically approaching to zero and the closed loop signals are all bounded for all the time. A numerical example is provided to illustrate the performance of the proposed control.
LA - eng
KW - Barrier Lyapunov Function; output regulation; nonlinear exosystem; Nussbaum gain; barrier Lyapunov function; output regulation; nonlinear exosystem; Nussbaum gain
UR - http://eudml.org/doc/261920
ER -

References

top
  1. Čelikovský, S., Huang, J., Continuous feedback practical output regulation for a class of nonlinear systems having nonstabilizable linearization., In: Proc. IEEE Conference on Decision and Control 1999, Phoenix 1999. 
  2. Castillo-Toledo, B., Čelikovský, S., Digennaro, S., Generalized immersion and nonlinear robust output regulation problem., Kybernetika 40 (2004), 207-220. MR2069179
  3. Chen, Z., Huang, J., 10.1016/j.sysconle.2003.10.006, Systems Control Lett. 52 (2004), 209-220. Zbl1157.93464MR2062594DOI10.1016/j.sysconle.2003.10.006
  4. Chen, Z., Huang, J., 10.1109/TAC.2004.826712, IEEE Trans. Automat. Control 49 (2004), 635-650. MR2057477DOI10.1109/TAC.2004.826712
  5. Chen, Z., Huang, J., 10.1016/j.automatica.2005.03.015, Automatica 41 (2005), 1447-1454. Zbl1086.93013MR2160490DOI10.1016/j.automatica.2005.03.015
  6. Chen, H., Sun, W., Sun, Z., Yeow, J. T. W., Second order sliding mode control of a 2D torsional MEMS micromirror with sidewall electrodes., J. Micromech. Microengrg. 23 (2013), 1-9. 
  7. Huang, J., Nonlinear Output Regulation: Theory and Applications., SIAM, Philadelphia 2004. Zbl1087.93003MR2308004
  8. Huang, J., Chen, Z., 10.1109/TAC.2004.839236, IEEE Trans. Automat. Control 49 (2004), 2203-2218. MR2106750DOI10.1109/TAC.2004.839236
  9. Isidori, A., Nonlinear Control Systems, Volume II., Springer-Verlag, New York 1999. MR1410988
  10. Jiang, Z., Mareels, I., 10.1109/9.557574, IEEE Trans. Automat. Control 42 (1997), 292-308. Zbl0869.93004MR1435820DOI10.1109/9.557574
  11. Krstić, M., Kanellakopoulos, I., Kokotović, P., Nonlinear and Adaptive Control Design., Wiley, New York 1995. 
  12. Liu, L., Huang, J., 10.1109/TAC.2006.883023, IEEE Trans. Automat. Control 51 (2006), 1693-1699. MR2262074DOI10.1109/TAC.2006.883023
  13. Liu, L., Huang, J., 10.1109/TAC.2006.872752, IEEE Trans. Automat. Control 51 (2006), 625-631. MR2228023DOI10.1109/TAC.2006.872752
  14. Marino, R., Tomei, P., Nonlinear Control Design., Prentice-Hall International, 1995. Zbl0833.93003
  15. Ma, Y., Islam, S., Pan, Y., Electrostatic torsional micromirror with enhanced tilting angle using active control methods., IEEE Trans. Mechatronics 16 (2011), 635-650. 
  16. Nussbaum, R. D., Some remaks on a conjecture in parameter adaptive control., Systems Control Lett. 3 (1983), 243-246. MR0722952
  17. Rehák, B., Čelikovský, S., Ruiz, J., Orozco-Mora, J., A comparison of two FEM-based methods for the solution of the nonlinear output regulation problem., Kybernetika 45 (2009), 427-444. Zbl1165.93320MR2543132
  18. Sontag, E. D., Teel, A. R., 10.1109/9.402246, IEEE Trans. Automat. Control 40 (1995), 1476-1478. Zbl0832.93047MR1343820DOI10.1109/9.402246
  19. Sontag, E. D., Mathematical control theory. In Texts in Applied Mathematics: Vol. 6. Deterministic finite-dimensional systems (Second edition)., Springer-Verlag, New York 1998. MR1640001
  20. Sun, W., Huang, J., Sun, Z., Global robust stabilization for a class of time-varying output feedback systems., Internat. J. Robotics and Automation 26 (2011), 93-99. Zbl1260.93142
  21. Sun, W., Yeow, J. T. W., Sun, Z., 10.1049/iet-cta.2010.0609, J. Control Theory Appl. 6 (2012), 111-119. MR2919507DOI10.1049/iet-cta.2010.0609
  22. Sun, W., 10.1007/s11768-013-2001-6, J. Control Theory Appl. 11 (2013), 468-476. MR3083996DOI10.1007/s11768-013-2001-6
  23. Tee, K. P., Ge, S. S., Tay, E. H., 10.1016/j.automatica.2008.11.017, Automatica 45 (2009), 918-927. Zbl1162.93346MR2535351DOI10.1016/j.automatica.2008.11.017
  24. Xu, D., Huang, J., 10.1109/TCSI.2009.2025001, IEEE Trans. Circuits and Systems I: Regular Papers 57 (2010), 691-702. MR2729967DOI10.1109/TCSI.2009.2025001
  25. Yang, X., Huang, J., 10.1002/rnc.1779, Internat. J. Robust and Nonlinear Control 22 (2012), 1703-1719. Zbl1274.93076MR2979770DOI10.1002/rnc.1779
  26. Ye, X., Jiang, J., 10.1109/9.728882, IEEE Trans. Automat. Control 43 (1998), 1617-1621. Zbl0957.93048MR1652847DOI10.1109/9.728882
  27. Ye, X., 10.1109/TAC.2011.2132270, IEEE Trans. Automat. Control 56 (2011), 1473-1478. MR2839246DOI10.1109/TAC.2011.2132270
  28. Zhang, B., Lan, W., 10.1002/rnc.2941, Internat. J. Robust and Nonlinear Control 23 (2013), 1087-1098. Zbl1286.93081MR3082138DOI10.1002/rnc.2941

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.